| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssint |
⊢ ( 𝐶 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ↔ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } 𝐶 ⊆ 𝑦 ) |
| 2 |
|
sseq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑦 ) ) |
| 3 |
2
|
ralrab |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } 𝐶 ⊆ 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) |
| 4 |
1 3
|
bitri |
⊢ ( 𝐶 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ↔ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) |
| 5 |
4
|
biimpri |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) → 𝐶 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ) |
| 6 |
5
|
adantl |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) → 𝐶 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ) |
| 7 |
|
sseq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝐴 ⊆ 𝑧 ↔ 𝐴 ⊆ 𝐶 ) ) |
| 8 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) → 𝐶 ∈ 𝐵 ) |
| 9 |
|
simplr |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) → 𝐴 ⊆ 𝐶 ) |
| 10 |
7 8 9
|
elrabd |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) → 𝐶 ∈ { 𝑧 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑧 } ) |
| 11 |
|
sseq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐴 ⊆ 𝑧 ↔ 𝐴 ⊆ 𝑥 ) ) |
| 12 |
11
|
cbvrabv |
⊢ { 𝑧 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑧 } = { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } |
| 13 |
10 12
|
eleqtrdi |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) → 𝐶 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ) |
| 14 |
|
intss1 |
⊢ ( 𝐶 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } → ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ⊆ 𝐶 ) |
| 15 |
13 14
|
syl |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ⊆ 𝐶 ) |
| 16 |
6 15
|
eqssd |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) → 𝐶 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ) |
| 17 |
16
|
expl |
⊢ ( 𝐶 ∈ 𝐵 → ( ( 𝐴 ⊆ 𝐶 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) → 𝐶 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ) ) |
| 18 |
|
ssintub |
⊢ 𝐴 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } |
| 19 |
|
sseq2 |
⊢ ( 𝐶 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } → ( 𝐴 ⊆ 𝐶 ↔ 𝐴 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ) ) |
| 20 |
18 19
|
mpbiri |
⊢ ( 𝐶 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } → 𝐴 ⊆ 𝐶 ) |
| 21 |
|
eqimss |
⊢ ( 𝐶 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } → 𝐶 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ) |
| 22 |
21 4
|
sylib |
⊢ ( 𝐶 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } → ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) |
| 23 |
20 22
|
jca |
⊢ ( 𝐶 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } → ( 𝐴 ⊆ 𝐶 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) ) |
| 24 |
17 23
|
impbid1 |
⊢ ( 𝐶 ∈ 𝐵 → ( ( 𝐴 ⊆ 𝐶 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦 ) ) ↔ 𝐶 = ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ) ) |