Metamath Proof Explorer


Theorem intubeu

Description: Existential uniqueness of the least upper bound. (Contributed by Zhi Wang, 28-Sep-2024)

Ref Expression
Assertion intubeu ( 𝐶𝐵 → ( ( 𝐴𝐶 ∧ ∀ 𝑦𝐵 ( 𝐴𝑦𝐶𝑦 ) ) ↔ 𝐶 = { 𝑥𝐵𝐴𝑥 } ) )

Proof

Step Hyp Ref Expression
1 ssint ( 𝐶 { 𝑥𝐵𝐴𝑥 } ↔ ∀ 𝑦 ∈ { 𝑥𝐵𝐴𝑥 } 𝐶𝑦 )
2 sseq2 ( 𝑥 = 𝑦 → ( 𝐴𝑥𝐴𝑦 ) )
3 2 ralrab ( ∀ 𝑦 ∈ { 𝑥𝐵𝐴𝑥 } 𝐶𝑦 ↔ ∀ 𝑦𝐵 ( 𝐴𝑦𝐶𝑦 ) )
4 1 3 bitri ( 𝐶 { 𝑥𝐵𝐴𝑥 } ↔ ∀ 𝑦𝐵 ( 𝐴𝑦𝐶𝑦 ) )
5 4 biimpri ( ∀ 𝑦𝐵 ( 𝐴𝑦𝐶𝑦 ) → 𝐶 { 𝑥𝐵𝐴𝑥 } )
6 5 adantl ( ( ( 𝐶𝐵𝐴𝐶 ) ∧ ∀ 𝑦𝐵 ( 𝐴𝑦𝐶𝑦 ) ) → 𝐶 { 𝑥𝐵𝐴𝑥 } )
7 sseq2 ( 𝑧 = 𝐶 → ( 𝐴𝑧𝐴𝐶 ) )
8 simpll ( ( ( 𝐶𝐵𝐴𝐶 ) ∧ ∀ 𝑦𝐵 ( 𝐴𝑦𝐶𝑦 ) ) → 𝐶𝐵 )
9 simplr ( ( ( 𝐶𝐵𝐴𝐶 ) ∧ ∀ 𝑦𝐵 ( 𝐴𝑦𝐶𝑦 ) ) → 𝐴𝐶 )
10 7 8 9 elrabd ( ( ( 𝐶𝐵𝐴𝐶 ) ∧ ∀ 𝑦𝐵 ( 𝐴𝑦𝐶𝑦 ) ) → 𝐶 ∈ { 𝑧𝐵𝐴𝑧 } )
11 sseq2 ( 𝑧 = 𝑥 → ( 𝐴𝑧𝐴𝑥 ) )
12 11 cbvrabv { 𝑧𝐵𝐴𝑧 } = { 𝑥𝐵𝐴𝑥 }
13 10 12 eleqtrdi ( ( ( 𝐶𝐵𝐴𝐶 ) ∧ ∀ 𝑦𝐵 ( 𝐴𝑦𝐶𝑦 ) ) → 𝐶 ∈ { 𝑥𝐵𝐴𝑥 } )
14 intss1 ( 𝐶 ∈ { 𝑥𝐵𝐴𝑥 } → { 𝑥𝐵𝐴𝑥 } ⊆ 𝐶 )
15 13 14 syl ( ( ( 𝐶𝐵𝐴𝐶 ) ∧ ∀ 𝑦𝐵 ( 𝐴𝑦𝐶𝑦 ) ) → { 𝑥𝐵𝐴𝑥 } ⊆ 𝐶 )
16 6 15 eqssd ( ( ( 𝐶𝐵𝐴𝐶 ) ∧ ∀ 𝑦𝐵 ( 𝐴𝑦𝐶𝑦 ) ) → 𝐶 = { 𝑥𝐵𝐴𝑥 } )
17 16 expl ( 𝐶𝐵 → ( ( 𝐴𝐶 ∧ ∀ 𝑦𝐵 ( 𝐴𝑦𝐶𝑦 ) ) → 𝐶 = { 𝑥𝐵𝐴𝑥 } ) )
18 ssintub 𝐴 { 𝑥𝐵𝐴𝑥 }
19 sseq2 ( 𝐶 = { 𝑥𝐵𝐴𝑥 } → ( 𝐴𝐶𝐴 { 𝑥𝐵𝐴𝑥 } ) )
20 18 19 mpbiri ( 𝐶 = { 𝑥𝐵𝐴𝑥 } → 𝐴𝐶 )
21 eqimss ( 𝐶 = { 𝑥𝐵𝐴𝑥 } → 𝐶 { 𝑥𝐵𝐴𝑥 } )
22 21 4 sylib ( 𝐶 = { 𝑥𝐵𝐴𝑥 } → ∀ 𝑦𝐵 ( 𝐴𝑦𝐶𝑦 ) )
23 20 22 jca ( 𝐶 = { 𝑥𝐵𝐴𝑥 } → ( 𝐴𝐶 ∧ ∀ 𝑦𝐵 ( 𝐴𝑦𝐶𝑦 ) ) )
24 17 23 impbid1 ( 𝐶𝐵 → ( ( 𝐴𝐶 ∧ ∀ 𝑦𝐵 ( 𝐴𝑦𝐶𝑦 ) ) ↔ 𝐶 = { 𝑥𝐵𝐴𝑥 } ) )