Description: Lemma for ipolubdm and ipolub . (Contributed by Zhi Wang, 28-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ipolub.i | |
|
ipolub.f | |
||
ipolub.s | |
||
ipolublem.l | |
||
Assertion | ipolublem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipolub.i | |
|
2 | ipolub.f | |
|
3 | ipolub.s | |
|
4 | ipolublem.l | |
|
5 | unissb | |
|
6 | 2 | ad2antrr | |
7 | 3 | ad2antrr | |
8 | simpr | |
|
9 | 7 8 | sseldd | |
10 | simplr | |
|
11 | 1 4 | ipole | |
12 | 6 9 10 11 | syl3anc | |
13 | 12 | ralbidva | |
14 | 5 13 | bitr4id | |
15 | unissb | |
|
16 | 6 | adantlr | |
17 | 9 | adantlr | |
18 | simplr | |
|
19 | 1 4 | ipole | |
20 | 16 17 18 19 | syl3anc | |
21 | 20 | ralbidva | |
22 | 15 21 | bitr4id | |
23 | 2 | ad2antrr | |
24 | simplr | |
|
25 | simpr | |
|
26 | 1 4 | ipole | |
27 | 23 24 25 26 | syl3anc | |
28 | 27 | bicomd | |
29 | 22 28 | imbi12d | |
30 | 29 | ralbidva | |
31 | 14 30 | anbi12d | |