| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mreclat.i |
⊢ 𝐼 = ( toInc ‘ 𝐶 ) |
| 2 |
|
mrelatglb.g |
⊢ 𝐺 = ( glb ‘ 𝐼 ) |
| 3 |
|
eqid |
⊢ ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) |
| 4 |
1
|
ipobas |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 = ( Base ‘ 𝐼 ) ) |
| 5 |
2
|
a1i |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐺 = ( glb ‘ 𝐼 ) ) |
| 6 |
1
|
ipopos |
⊢ 𝐼 ∈ Poset |
| 7 |
6
|
a1i |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ Poset ) |
| 8 |
|
0ss |
⊢ ∅ ⊆ 𝐶 |
| 9 |
8
|
a1i |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∅ ⊆ 𝐶 ) |
| 10 |
|
mre1cl |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝐶 ) |
| 11 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ 𝑋 ( le ‘ 𝐼 ) 𝑥 |
| 12 |
11
|
rspec |
⊢ ( 𝑥 ∈ ∅ → 𝑋 ( le ‘ 𝐼 ) 𝑥 ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ ∅ ) → 𝑋 ( le ‘ 𝐼 ) 𝑥 ) |
| 14 |
|
mress |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐶 ) → 𝑦 ⊆ 𝑋 ) |
| 15 |
10
|
adantr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐶 ) → 𝑋 ∈ 𝐶 ) |
| 16 |
1 3
|
ipole |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐶 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑦 ( le ‘ 𝐼 ) 𝑋 ↔ 𝑦 ⊆ 𝑋 ) ) |
| 17 |
15 16
|
mpd3an3 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑦 ( le ‘ 𝐼 ) 𝑋 ↔ 𝑦 ⊆ 𝑋 ) ) |
| 18 |
14 17
|
mpbird |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐶 ) → 𝑦 ( le ‘ 𝐼 ) 𝑋 ) |
| 19 |
18
|
3adant3 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ ∅ 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → 𝑦 ( le ‘ 𝐼 ) 𝑋 ) |
| 20 |
3 4 5 7 9 10 13 19
|
posglbdg |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝐺 ‘ ∅ ) = 𝑋 ) |