Metamath Proof Explorer


Theorem mrelatglb0

Description: The empty intersection in a Moore space is realized by the base set. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypotheses mreclat.i I=toIncC
mrelatglb.g G=glbI
Assertion mrelatglb0 CMooreXG=X

Proof

Step Hyp Ref Expression
1 mreclat.i I=toIncC
2 mrelatglb.g G=glbI
3 eqid I=I
4 1 ipobas CMooreXC=BaseI
5 2 a1i CMooreXG=glbI
6 1 ipopos IPoset
7 6 a1i CMooreXIPoset
8 0ss C
9 8 a1i CMooreXC
10 mre1cl CMooreXXC
11 ral0 xXIx
12 11 rspec xXIx
13 12 adantl CMooreXxXIx
14 mress CMooreXyCyX
15 10 adantr CMooreXyCXC
16 1 3 ipole CMooreXyCXCyIXyX
17 15 16 mpd3an3 CMooreXyCyIXyX
18 14 17 mpbird CMooreXyCyIX
19 18 3adant3 CMooreXyCxyIxyIX
20 3 4 5 7 9 10 13 19 posglbdg CMooreXG=X