Metamath Proof Explorer


Theorem mrelatlub

Description: Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypotheses mreclat.i I = toInc C
mrelatlub.f F = mrCls C
mrelatlub.l L = lub I
Assertion mrelatlub C Moore X U C L U = F U

Proof

Step Hyp Ref Expression
1 mreclat.i I = toInc C
2 mrelatlub.f F = mrCls C
3 mrelatlub.l L = lub I
4 eqid I = I
5 1 ipobas C Moore X C = Base I
6 5 adantr C Moore X U C C = Base I
7 3 a1i C Moore X U C L = lub I
8 1 ipopos I Poset
9 8 a1i C Moore X U C I Poset
10 simpr C Moore X U C U C
11 uniss U C U C
12 11 adantl C Moore X U C U C
13 mreuni C Moore X C = X
14 13 adantr C Moore X U C C = X
15 12 14 sseqtrd C Moore X U C U X
16 2 mrccl C Moore X U X F U C
17 15 16 syldan C Moore X U C F U C
18 elssuni x U x U
19 2 mrcssid C Moore X U X U F U
20 15 19 syldan C Moore X U C U F U
21 18 20 sylan9ssr C Moore X U C x U x F U
22 simpll C Moore X U C x U C Moore X
23 10 sselda C Moore X U C x U x C
24 17 adantr C Moore X U C x U F U C
25 1 4 ipole C Moore X x C F U C x I F U x F U
26 22 23 24 25 syl3anc C Moore X U C x U x I F U x F U
27 21 26 mpbird C Moore X U C x U x I F U
28 simp1l C Moore X U C y C x U x I y C Moore X
29 simplll C Moore X U C y C x U C Moore X
30 simplr C Moore X U C y C U C
31 30 sselda C Moore X U C y C x U x C
32 simplr C Moore X U C y C x U y C
33 1 4 ipole C Moore X x C y C x I y x y
34 29 31 32 33 syl3anc C Moore X U C y C x U x I y x y
35 34 biimpd C Moore X U C y C x U x I y x y
36 35 ralimdva C Moore X U C y C x U x I y x U x y
37 36 3impia C Moore X U C y C x U x I y x U x y
38 unissb U y x U x y
39 37 38 sylibr C Moore X U C y C x U x I y U y
40 simp2 C Moore X U C y C x U x I y y C
41 2 mrcsscl C Moore X U y y C F U y
42 28 39 40 41 syl3anc C Moore X U C y C x U x I y F U y
43 17 3ad2ant1 C Moore X U C y C x U x I y F U C
44 1 4 ipole C Moore X F U C y C F U I y F U y
45 28 43 40 44 syl3anc C Moore X U C y C x U x I y F U I y F U y
46 42 45 mpbird C Moore X U C y C x U x I y F U I y
47 4 6 7 9 10 17 27 46 poslubdg C Moore X U C L U = F U