Metamath Proof Explorer
Description: If a product divides an integer, so does one of its factors, a deduction
version. (Contributed by metakunt, 12-May-2024)
|
|
Ref |
Expression |
|
Hypotheses |
muldvds1d.1 |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
|
|
muldvds1d.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
|
|
muldvds1d.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
|
|
muldvds1d.4 |
⊢ ( 𝜑 → ( 𝐾 · 𝑀 ) ∥ 𝑁 ) |
|
Assertion |
muldvds1d |
⊢ ( 𝜑 → 𝐾 ∥ 𝑁 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
muldvds1d.1 |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
2 |
|
muldvds1d.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
muldvds1d.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
4 |
|
muldvds1d.4 |
⊢ ( 𝜑 → ( 𝐾 · 𝑀 ) ∥ 𝑁 ) |
5 |
1 2 3
|
3jca |
⊢ ( 𝜑 → ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
6 |
|
muldvds1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) ∥ 𝑁 → 𝐾 ∥ 𝑁 ) ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → ( ( 𝐾 · 𝑀 ) ∥ 𝑁 → 𝐾 ∥ 𝑁 ) ) |
8 |
4 7
|
mpd |
⊢ ( 𝜑 → 𝐾 ∥ 𝑁 ) |