Metamath Proof Explorer


Theorem muldvds1d

Description: If a product divides an integer, so does one of its factors, a deduction version. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses muldvds1d.1 ( 𝜑𝐾 ∈ ℤ )
muldvds1d.2 ( 𝜑𝑀 ∈ ℤ )
muldvds1d.3 ( 𝜑𝑁 ∈ ℤ )
muldvds1d.4 ( 𝜑 → ( 𝐾 · 𝑀 ) ∥ 𝑁 )
Assertion muldvds1d ( 𝜑𝐾𝑁 )

Proof

Step Hyp Ref Expression
1 muldvds1d.1 ( 𝜑𝐾 ∈ ℤ )
2 muldvds1d.2 ( 𝜑𝑀 ∈ ℤ )
3 muldvds1d.3 ( 𝜑𝑁 ∈ ℤ )
4 muldvds1d.4 ( 𝜑 → ( 𝐾 · 𝑀 ) ∥ 𝑁 )
5 1 2 3 3jca ( 𝜑 → ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) )
6 muldvds1 ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) ∥ 𝑁𝐾𝑁 ) )
7 5 6 syl ( 𝜑 → ( ( 𝐾 · 𝑀 ) ∥ 𝑁𝐾𝑁 ) )
8 4 7 mpd ( 𝜑𝐾𝑁 )