Description: If a product divides an integer, so does one of its factors, a deduction version. (Contributed by metakunt, 12-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | muldvds1d.1 | |- ( ph -> K e. ZZ ) |
|
| muldvds1d.2 | |- ( ph -> M e. ZZ ) |
||
| muldvds1d.3 | |- ( ph -> N e. ZZ ) |
||
| muldvds1d.4 | |- ( ph -> ( K x. M ) || N ) |
||
| Assertion | muldvds1d | |- ( ph -> K || N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muldvds1d.1 | |- ( ph -> K e. ZZ ) |
|
| 2 | muldvds1d.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | muldvds1d.3 | |- ( ph -> N e. ZZ ) |
|
| 4 | muldvds1d.4 | |- ( ph -> ( K x. M ) || N ) |
|
| 5 | 1 2 3 | 3jca | |- ( ph -> ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) ) |
| 6 | muldvds1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) || N -> K || N ) ) |
|
| 7 | 5 6 | syl | |- ( ph -> ( ( K x. M ) || N -> K || N ) ) |
| 8 | 4 7 | mpd | |- ( ph -> K || N ) |