Description: If a product divides an integer, so does one of its factors, a deduction version. (Contributed by metakunt, 12-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | muldvds2d.1 | |- ( ph -> K e. ZZ ) | |
| muldvds2d.2 | |- ( ph -> M e. ZZ ) | ||
| muldvds2d.3 | |- ( ph -> N e. ZZ ) | ||
| muldvds2d.4 | |- ( ph -> ( K x. M ) || N ) | ||
| Assertion | muldvds2d | |- ( ph -> M || N ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | muldvds2d.1 | |- ( ph -> K e. ZZ ) | |
| 2 | muldvds2d.2 | |- ( ph -> M e. ZZ ) | |
| 3 | muldvds2d.3 | |- ( ph -> N e. ZZ ) | |
| 4 | muldvds2d.4 | |- ( ph -> ( K x. M ) || N ) | |
| 5 | 1 2 3 | 3jca | |- ( ph -> ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) ) | 
| 6 | muldvds2 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) || N -> M || N ) ) | |
| 7 | 5 4 6 | sylc | |- ( ph -> M || N ) |