Metamath Proof Explorer


Theorem muldvds2d

Description: If a product divides an integer, so does one of its factors, a deduction version. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses muldvds2d.1 φK
muldvds2d.2 φM
muldvds2d.3 φN
muldvds2d.4 φK MN
Assertion muldvds2d φMN

Proof

Step Hyp Ref Expression
1 muldvds2d.1 φK
2 muldvds2d.2 φM
3 muldvds2d.3 φN
4 muldvds2d.4 φK MN
5 1 2 3 3jca φKMN
6 muldvds2 KMNK MNMN
7 5 4 6 sylc φMN