Metamath Proof Explorer


Theorem negf1o

Description: Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020)

Ref Expression
Hypothesis negf1o.1 𝐹 = ( 𝑥𝐴 ↦ - 𝑥 )
Assertion negf1o ( 𝐴 ⊆ ℝ → 𝐹 : 𝐴1-1-onto→ { 𝑛 ∈ ℝ ∣ - 𝑛𝐴 } )

Proof

Step Hyp Ref Expression
1 negf1o.1 𝐹 = ( 𝑥𝐴 ↦ - 𝑥 )
2 negeq ( 𝑛 = - 𝑥 → - 𝑛 = - - 𝑥 )
3 2 eleq1d ( 𝑛 = - 𝑥 → ( - 𝑛𝐴 ↔ - - 𝑥𝐴 ) )
4 ssel ( 𝐴 ⊆ ℝ → ( 𝑥𝐴𝑥 ∈ ℝ ) )
5 renegcl ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℝ )
6 4 5 syl6 ( 𝐴 ⊆ ℝ → ( 𝑥𝐴 → - 𝑥 ∈ ℝ ) )
7 6 imp ( ( 𝐴 ⊆ ℝ ∧ 𝑥𝐴 ) → - 𝑥 ∈ ℝ )
8 4 imp ( ( 𝐴 ⊆ ℝ ∧ 𝑥𝐴 ) → 𝑥 ∈ ℝ )
9 recn ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ )
10 negneg ( 𝑥 ∈ ℂ → - - 𝑥 = 𝑥 )
11 10 eqcomd ( 𝑥 ∈ ℂ → 𝑥 = - - 𝑥 )
12 9 11 syl ( 𝑥 ∈ ℝ → 𝑥 = - - 𝑥 )
13 12 eleq1d ( 𝑥 ∈ ℝ → ( 𝑥𝐴 ↔ - - 𝑥𝐴 ) )
14 13 biimpcd ( 𝑥𝐴 → ( 𝑥 ∈ ℝ → - - 𝑥𝐴 ) )
15 14 adantl ( ( 𝐴 ⊆ ℝ ∧ 𝑥𝐴 ) → ( 𝑥 ∈ ℝ → - - 𝑥𝐴 ) )
16 8 15 mpd ( ( 𝐴 ⊆ ℝ ∧ 𝑥𝐴 ) → - - 𝑥𝐴 )
17 3 7 16 elrabd ( ( 𝐴 ⊆ ℝ ∧ 𝑥𝐴 ) → - 𝑥 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛𝐴 } )
18 negeq ( 𝑛 = 𝑦 → - 𝑛 = - 𝑦 )
19 18 eleq1d ( 𝑛 = 𝑦 → ( - 𝑛𝐴 ↔ - 𝑦𝐴 ) )
20 19 elrab ( 𝑦 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛𝐴 } ↔ ( 𝑦 ∈ ℝ ∧ - 𝑦𝐴 ) )
21 simpr ( ( 𝑦 ∈ ℝ ∧ - 𝑦𝐴 ) → - 𝑦𝐴 )
22 21 a1i ( 𝐴 ⊆ ℝ → ( ( 𝑦 ∈ ℝ ∧ - 𝑦𝐴 ) → - 𝑦𝐴 ) )
23 20 22 syl5bi ( 𝐴 ⊆ ℝ → ( 𝑦 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛𝐴 } → - 𝑦𝐴 ) )
24 23 imp ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛𝐴 } ) → - 𝑦𝐴 )
25 4 9 syl6com ( 𝑥𝐴 → ( 𝐴 ⊆ ℝ → 𝑥 ∈ ℂ ) )
26 25 adantl ( ( ( 𝑦 ∈ ℝ ∧ - 𝑦𝐴 ) ∧ 𝑥𝐴 ) → ( 𝐴 ⊆ ℝ → 𝑥 ∈ ℂ ) )
27 26 imp ( ( ( ( 𝑦 ∈ ℝ ∧ - 𝑦𝐴 ) ∧ 𝑥𝐴 ) ∧ 𝐴 ⊆ ℝ ) → 𝑥 ∈ ℂ )
28 recn ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ )
29 28 ad3antrrr ( ( ( ( 𝑦 ∈ ℝ ∧ - 𝑦𝐴 ) ∧ 𝑥𝐴 ) ∧ 𝐴 ⊆ ℝ ) → 𝑦 ∈ ℂ )
30 negcon2 ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 = - 𝑦𝑦 = - 𝑥 ) )
31 27 29 30 syl2anc ( ( ( ( 𝑦 ∈ ℝ ∧ - 𝑦𝐴 ) ∧ 𝑥𝐴 ) ∧ 𝐴 ⊆ ℝ ) → ( 𝑥 = - 𝑦𝑦 = - 𝑥 ) )
32 31 exp31 ( ( 𝑦 ∈ ℝ ∧ - 𝑦𝐴 ) → ( 𝑥𝐴 → ( 𝐴 ⊆ ℝ → ( 𝑥 = - 𝑦𝑦 = - 𝑥 ) ) ) )
33 20 32 sylbi ( 𝑦 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛𝐴 } → ( 𝑥𝐴 → ( 𝐴 ⊆ ℝ → ( 𝑥 = - 𝑦𝑦 = - 𝑥 ) ) ) )
34 33 impcom ( ( 𝑥𝐴𝑦 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛𝐴 } ) → ( 𝐴 ⊆ ℝ → ( 𝑥 = - 𝑦𝑦 = - 𝑥 ) ) )
35 34 impcom ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥𝐴𝑦 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛𝐴 } ) ) → ( 𝑥 = - 𝑦𝑦 = - 𝑥 ) )
36 1 17 24 35 f1o2d ( 𝐴 ⊆ ℝ → 𝐹 : 𝐴1-1-onto→ { 𝑛 ∈ ℝ ∣ - 𝑛𝐴 } )