Step |
Hyp |
Ref |
Expression |
1 |
|
negf1o.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ - 𝑥 ) |
2 |
|
negeq |
⊢ ( 𝑛 = - 𝑥 → - 𝑛 = - - 𝑥 ) |
3 |
2
|
eleq1d |
⊢ ( 𝑛 = - 𝑥 → ( - 𝑛 ∈ 𝐴 ↔ - - 𝑥 ∈ 𝐴 ) ) |
4 |
|
ssel |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℝ ) ) |
5 |
|
renegcl |
⊢ ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℝ ) |
6 |
4 5
|
syl6 |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑥 ∈ 𝐴 → - 𝑥 ∈ ℝ ) ) |
7 |
6
|
imp |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → - 𝑥 ∈ ℝ ) |
8 |
4
|
imp |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
9 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
10 |
|
negneg |
⊢ ( 𝑥 ∈ ℂ → - - 𝑥 = 𝑥 ) |
11 |
10
|
eqcomd |
⊢ ( 𝑥 ∈ ℂ → 𝑥 = - - 𝑥 ) |
12 |
9 11
|
syl |
⊢ ( 𝑥 ∈ ℝ → 𝑥 = - - 𝑥 ) |
13 |
12
|
eleq1d |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ 𝐴 ↔ - - 𝑥 ∈ 𝐴 ) ) |
14 |
13
|
biimpcd |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ℝ → - - 𝑥 ∈ 𝐴 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ℝ → - - 𝑥 ∈ 𝐴 ) ) |
16 |
8 15
|
mpd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → - - 𝑥 ∈ 𝐴 ) |
17 |
3 7 16
|
elrabd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → - 𝑥 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ) |
18 |
|
negeq |
⊢ ( 𝑛 = 𝑦 → - 𝑛 = - 𝑦 ) |
19 |
18
|
eleq1d |
⊢ ( 𝑛 = 𝑦 → ( - 𝑛 ∈ 𝐴 ↔ - 𝑦 ∈ 𝐴 ) ) |
20 |
19
|
elrab |
⊢ ( 𝑦 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ↔ ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ 𝐴 ) ) |
21 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ 𝐴 ) → - 𝑦 ∈ 𝐴 ) |
22 |
21
|
a1i |
⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ 𝐴 ) → - 𝑦 ∈ 𝐴 ) ) |
23 |
20 22
|
syl5bi |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑦 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } → - 𝑦 ∈ 𝐴 ) ) |
24 |
23
|
imp |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ) → - 𝑦 ∈ 𝐴 ) |
25 |
4 9
|
syl6com |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝐴 ⊆ ℝ → 𝑥 ∈ ℂ ) ) |
26 |
25
|
adantl |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ⊆ ℝ → 𝑥 ∈ ℂ ) ) |
27 |
26
|
imp |
⊢ ( ( ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐴 ⊆ ℝ ) → 𝑥 ∈ ℂ ) |
28 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
29 |
28
|
ad3antrrr |
⊢ ( ( ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐴 ⊆ ℝ ) → 𝑦 ∈ ℂ ) |
30 |
|
negcon2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 = - 𝑦 ↔ 𝑦 = - 𝑥 ) ) |
31 |
27 29 30
|
syl2anc |
⊢ ( ( ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐴 ⊆ ℝ ) → ( 𝑥 = - 𝑦 ↔ 𝑦 = - 𝑥 ) ) |
32 |
31
|
exp31 |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 → ( 𝐴 ⊆ ℝ → ( 𝑥 = - 𝑦 ↔ 𝑦 = - 𝑥 ) ) ) ) |
33 |
20 32
|
sylbi |
⊢ ( 𝑦 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } → ( 𝑥 ∈ 𝐴 → ( 𝐴 ⊆ ℝ → ( 𝑥 = - 𝑦 ↔ 𝑦 = - 𝑥 ) ) ) ) |
34 |
33
|
impcom |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ) → ( 𝐴 ⊆ ℝ → ( 𝑥 = - 𝑦 ↔ 𝑦 = - 𝑥 ) ) ) |
35 |
34
|
impcom |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ) ) → ( 𝑥 = - 𝑦 ↔ 𝑦 = - 𝑥 ) ) |
36 |
1 17 24 35
|
f1o2d |
⊢ ( 𝐴 ⊆ ℝ → 𝐹 : 𝐴 –1-1-onto→ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ) |