| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							negf1o.1 | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  - 𝑥 )  | 
						
						
							| 2 | 
							
								
							 | 
							negeq | 
							⊢ ( 𝑛  =  - 𝑥  →  - 𝑛  =  - - 𝑥 )  | 
						
						
							| 3 | 
							
								2
							 | 
							eleq1d | 
							⊢ ( 𝑛  =  - 𝑥  →  ( - 𝑛  ∈  𝐴  ↔  - - 𝑥  ∈  𝐴 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							ssel | 
							⊢ ( 𝐴  ⊆  ℝ  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  ℝ ) )  | 
						
						
							| 5 | 
							
								
							 | 
							renegcl | 
							⊢ ( 𝑥  ∈  ℝ  →  - 𝑥  ∈  ℝ )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							syl6 | 
							⊢ ( 𝐴  ⊆  ℝ  →  ( 𝑥  ∈  𝐴  →  - 𝑥  ∈  ℝ ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							imp | 
							⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  𝐴 )  →  - 𝑥  ∈  ℝ )  | 
						
						
							| 8 | 
							
								4
							 | 
							imp | 
							⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℝ )  | 
						
						
							| 9 | 
							
								
							 | 
							recn | 
							⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℂ )  | 
						
						
							| 10 | 
							
								
							 | 
							negneg | 
							⊢ ( 𝑥  ∈  ℂ  →  - - 𝑥  =  𝑥 )  | 
						
						
							| 11 | 
							
								10
							 | 
							eqcomd | 
							⊢ ( 𝑥  ∈  ℂ  →  𝑥  =  - - 𝑥 )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							syl | 
							⊢ ( 𝑥  ∈  ℝ  →  𝑥  =  - - 𝑥 )  | 
						
						
							| 13 | 
							
								12
							 | 
							eleq1d | 
							⊢ ( 𝑥  ∈  ℝ  →  ( 𝑥  ∈  𝐴  ↔  - - 𝑥  ∈  𝐴 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							biimpcd | 
							⊢ ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  ℝ  →  - - 𝑥  ∈  𝐴 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantl | 
							⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  ℝ  →  - - 𝑥  ∈  𝐴 ) )  | 
						
						
							| 16 | 
							
								8 15
							 | 
							mpd | 
							⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  𝐴 )  →  - - 𝑥  ∈  𝐴 )  | 
						
						
							| 17 | 
							
								3 7 16
							 | 
							elrabd | 
							⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  𝐴 )  →  - 𝑥  ∈  { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 } )  | 
						
						
							| 18 | 
							
								
							 | 
							negeq | 
							⊢ ( 𝑛  =  𝑦  →  - 𝑛  =  - 𝑦 )  | 
						
						
							| 19 | 
							
								18
							 | 
							eleq1d | 
							⊢ ( 𝑛  =  𝑦  →  ( - 𝑛  ∈  𝐴  ↔  - 𝑦  ∈  𝐴 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							elrab | 
							⊢ ( 𝑦  ∈  { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 }  ↔  ( 𝑦  ∈  ℝ  ∧  - 𝑦  ∈  𝐴 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑦  ∈  ℝ  ∧  - 𝑦  ∈  𝐴 )  →  - 𝑦  ∈  𝐴 )  | 
						
						
							| 22 | 
							
								21
							 | 
							a1i | 
							⊢ ( 𝐴  ⊆  ℝ  →  ( ( 𝑦  ∈  ℝ  ∧  - 𝑦  ∈  𝐴 )  →  - 𝑦  ∈  𝐴 ) )  | 
						
						
							| 23 | 
							
								20 22
							 | 
							biimtrid | 
							⊢ ( 𝐴  ⊆  ℝ  →  ( 𝑦  ∈  { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 }  →  - 𝑦  ∈  𝐴 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							imp | 
							⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑦  ∈  { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 } )  →  - 𝑦  ∈  𝐴 )  | 
						
						
							| 25 | 
							
								4 9
							 | 
							syl6com | 
							⊢ ( 𝑥  ∈  𝐴  →  ( 𝐴  ⊆  ℝ  →  𝑥  ∈  ℂ ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantl | 
							⊢ ( ( ( 𝑦  ∈  ℝ  ∧  - 𝑦  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐴  ⊆  ℝ  →  𝑥  ∈  ℂ ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							imp | 
							⊢ ( ( ( ( 𝑦  ∈  ℝ  ∧  - 𝑦  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  ∧  𝐴  ⊆  ℝ )  →  𝑥  ∈  ℂ )  | 
						
						
							| 28 | 
							
								
							 | 
							recn | 
							⊢ ( 𝑦  ∈  ℝ  →  𝑦  ∈  ℂ )  | 
						
						
							| 29 | 
							
								28
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝑦  ∈  ℝ  ∧  - 𝑦  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  ∧  𝐴  ⊆  ℝ )  →  𝑦  ∈  ℂ )  | 
						
						
							| 30 | 
							
								
							 | 
							negcon2 | 
							⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  =  - 𝑦  ↔  𝑦  =  - 𝑥 ) )  | 
						
						
							| 31 | 
							
								27 29 30
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝑦  ∈  ℝ  ∧  - 𝑦  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  ∧  𝐴  ⊆  ℝ )  →  ( 𝑥  =  - 𝑦  ↔  𝑦  =  - 𝑥 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							exp31 | 
							⊢ ( ( 𝑦  ∈  ℝ  ∧  - 𝑦  ∈  𝐴 )  →  ( 𝑥  ∈  𝐴  →  ( 𝐴  ⊆  ℝ  →  ( 𝑥  =  - 𝑦  ↔  𝑦  =  - 𝑥 ) ) ) )  | 
						
						
							| 33 | 
							
								20 32
							 | 
							sylbi | 
							⊢ ( 𝑦  ∈  { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 }  →  ( 𝑥  ∈  𝐴  →  ( 𝐴  ⊆  ℝ  →  ( 𝑥  =  - 𝑦  ↔  𝑦  =  - 𝑥 ) ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							impcom | 
							⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 } )  →  ( 𝐴  ⊆  ℝ  →  ( 𝑥  =  - 𝑦  ↔  𝑦  =  - 𝑥 ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							impcom | 
							⊢ ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 } ) )  →  ( 𝑥  =  - 𝑦  ↔  𝑦  =  - 𝑥 ) )  | 
						
						
							| 36 | 
							
								1 17 24 35
							 | 
							f1o2d | 
							⊢ ( 𝐴  ⊆  ℝ  →  𝐹 : 𝐴 –1-1-onto→ { 𝑛  ∈  ℝ  ∣  - 𝑛  ∈  𝐴 } )  |