| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1sno | ⊢  1s   ∈   No | 
						
							| 2 |  | negsval | ⊢ (  1s   ∈   No   →  (  -us  ‘  1s  )  =  ( (  -us   “  (  R  ‘  1s  ) )  |s  (  -us   “  (  L  ‘  1s  ) ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ (  -us  ‘  1s  )  =  ( (  -us   “  (  R  ‘  1s  ) )  |s  (  -us   “  (  L  ‘  1s  ) ) ) | 
						
							| 4 |  | right1s | ⊢ (  R  ‘  1s  )  =  ∅ | 
						
							| 5 | 4 | imaeq2i | ⊢ (  -us   “  (  R  ‘  1s  ) )  =  (  -us   “  ∅ ) | 
						
							| 6 |  | ima0 | ⊢ (  -us   “  ∅ )  =  ∅ | 
						
							| 7 | 5 6 | eqtri | ⊢ (  -us   “  (  R  ‘  1s  ) )  =  ∅ | 
						
							| 8 |  | left1s | ⊢ (  L  ‘  1s  )  =  {  0s  } | 
						
							| 9 | 8 | imaeq2i | ⊢ (  -us   “  (  L  ‘  1s  ) )  =  (  -us   “  {  0s  } ) | 
						
							| 10 |  | negsfn | ⊢  -us   Fn   No | 
						
							| 11 |  | 0sno | ⊢  0s   ∈   No | 
						
							| 12 |  | fnimapr | ⊢ ( (  -us   Fn   No   ∧   0s   ∈   No   ∧   0s   ∈   No  )  →  (  -us   “  {  0s  ,   0s  } )  =  { (  -us  ‘  0s  ) ,  (  -us  ‘  0s  ) } ) | 
						
							| 13 | 10 11 11 12 | mp3an | ⊢ (  -us   “  {  0s  ,   0s  } )  =  { (  -us  ‘  0s  ) ,  (  -us  ‘  0s  ) } | 
						
							| 14 |  | negs0s | ⊢ (  -us  ‘  0s  )  =   0s | 
						
							| 15 | 14 14 | preq12i | ⊢ { (  -us  ‘  0s  ) ,  (  -us  ‘  0s  ) }  =  {  0s  ,   0s  } | 
						
							| 16 | 13 15 | eqtri | ⊢ (  -us   “  {  0s  ,   0s  } )  =  {  0s  ,   0s  } | 
						
							| 17 |  | dfsn2 | ⊢ {  0s  }  =  {  0s  ,   0s  } | 
						
							| 18 | 17 | imaeq2i | ⊢ (  -us   “  {  0s  } )  =  (  -us   “  {  0s  ,   0s  } ) | 
						
							| 19 | 16 18 17 | 3eqtr4i | ⊢ (  -us   “  {  0s  } )  =  {  0s  } | 
						
							| 20 | 9 19 | eqtri | ⊢ (  -us   “  (  L  ‘  1s  ) )  =  {  0s  } | 
						
							| 21 | 7 20 | oveq12i | ⊢ ( (  -us   “  (  R  ‘  1s  ) )  |s  (  -us   “  (  L  ‘  1s  ) ) )  =  ( ∅  |s  {  0s  } ) | 
						
							| 22 | 3 21 | eqtri | ⊢ (  -us  ‘  1s  )  =  ( ∅  |s  {  0s  } ) |