Step |
Hyp |
Ref |
Expression |
1 |
|
neifval.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
3 |
|
pwexg |
⊢ ( 𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V ) |
4 |
|
rabexg |
⊢ ( 𝒫 𝑋 ∈ V → { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ∈ V ) |
5 |
2 3 4
|
3syl |
⊢ ( 𝐽 ∈ Top → { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ∈ V ) |
6 |
5
|
ralrimivw |
⊢ ( 𝐽 ∈ Top → ∀ 𝑥 ∈ 𝒫 𝑋 { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ∈ V ) |
7 |
|
eqid |
⊢ ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) |
8 |
7
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝒫 𝑋 { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ∈ V → ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) Fn 𝒫 𝑋 ) |
9 |
6 8
|
syl |
⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) Fn 𝒫 𝑋 ) |
10 |
1
|
neifval |
⊢ ( 𝐽 ∈ Top → ( nei ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) ) |
11 |
10
|
fneq1d |
⊢ ( 𝐽 ∈ Top → ( ( nei ‘ 𝐽 ) Fn 𝒫 𝑋 ↔ ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) Fn 𝒫 𝑋 ) ) |
12 |
9 11
|
mpbird |
⊢ ( 𝐽 ∈ Top → ( nei ‘ 𝐽 ) Fn 𝒫 𝑋 ) |