Metamath Proof Explorer


Theorem neif

Description: The neighborhood function is a function from the set of the subsets of the base set of a topology. (Contributed by NM, 12-Feb-2007) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis neifval.1 𝑋 = 𝐽
Assertion neif ( 𝐽 ∈ Top → ( nei ‘ 𝐽 ) Fn 𝒫 𝑋 )

Proof

Step Hyp Ref Expression
1 neifval.1 𝑋 = 𝐽
2 1 topopn ( 𝐽 ∈ Top → 𝑋𝐽 )
3 pwexg ( 𝑋𝐽 → 𝒫 𝑋 ∈ V )
4 rabexg ( 𝒫 𝑋 ∈ V → { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔𝐽 ( 𝑥𝑔𝑔𝑣 ) } ∈ V )
5 2 3 4 3syl ( 𝐽 ∈ Top → { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔𝐽 ( 𝑥𝑔𝑔𝑣 ) } ∈ V )
6 5 ralrimivw ( 𝐽 ∈ Top → ∀ 𝑥 ∈ 𝒫 𝑋 { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔𝐽 ( 𝑥𝑔𝑔𝑣 ) } ∈ V )
7 eqid ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔𝐽 ( 𝑥𝑔𝑔𝑣 ) } ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔𝐽 ( 𝑥𝑔𝑔𝑣 ) } )
8 7 fnmpt ( ∀ 𝑥 ∈ 𝒫 𝑋 { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔𝐽 ( 𝑥𝑔𝑔𝑣 ) } ∈ V → ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔𝐽 ( 𝑥𝑔𝑔𝑣 ) } ) Fn 𝒫 𝑋 )
9 6 8 syl ( 𝐽 ∈ Top → ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔𝐽 ( 𝑥𝑔𝑔𝑣 ) } ) Fn 𝒫 𝑋 )
10 1 neifval ( 𝐽 ∈ Top → ( nei ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔𝐽 ( 𝑥𝑔𝑔𝑣 ) } ) )
11 10 fneq1d ( 𝐽 ∈ Top → ( ( nei ‘ 𝐽 ) Fn 𝒫 𝑋 ↔ ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔𝐽 ( 𝑥𝑔𝑔𝑣 ) } ) Fn 𝒫 𝑋 ) )
12 9 11 mpbird ( 𝐽 ∈ Top → ( nei ‘ 𝐽 ) Fn 𝒫 𝑋 )