Metamath Proof Explorer


Theorem nfded2

Description: A deduction theorem that converts a not-free inference directly to deduction form. The first 2 hypotheses are the hypotheses of the deduction form. The third is an equality deduction (e.g., ( ( F/_ x A /\ F/_ x B ) -> <. { y | A. x y e. A } , { y | A. x y e. B } >. = <. A , B >. ) for nfopd ) that starts from abidnf . The last is assigned to the inference form (e.g., F/_ x <. { y | A. x y e. A } , { y | A. x y e. B } >. for nfop ) whose hypotheses are satisfied using nfaba1 . (Contributed by NM, 19-Nov-2020)

Ref Expression
Hypotheses nfded2.1 ( 𝜑 𝑥 𝐴 )
nfded2.2 ( 𝜑 𝑥 𝐵 )
nfded2.3 ( ( 𝑥 𝐴 𝑥 𝐵 ) → 𝐶 = 𝐷 )
nfded2.4 𝑥 𝐶
Assertion nfded2 ( 𝜑 𝑥 𝐷 )

Proof

Step Hyp Ref Expression
1 nfded2.1 ( 𝜑 𝑥 𝐴 )
2 nfded2.2 ( 𝜑 𝑥 𝐵 )
3 nfded2.3 ( ( 𝑥 𝐴 𝑥 𝐵 ) → 𝐶 = 𝐷 )
4 nfded2.4 𝑥 𝐶
5 nfnfc1 𝑥 𝑥 𝐴
6 nfnfc1 𝑥 𝑥 𝐵
7 5 6 nfan 𝑥 ( 𝑥 𝐴 𝑥 𝐵 )
8 7 3 nfceqdf ( ( 𝑥 𝐴 𝑥 𝐵 ) → ( 𝑥 𝐶 𝑥 𝐷 ) )
9 1 2 8 syl2anc ( 𝜑 → ( 𝑥 𝐶 𝑥 𝐷 ) )
10 4 9 mpbii ( 𝜑 𝑥 𝐷 )