Description: Deduction version of nfuni . (Contributed by NM, 19-Nov-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nfunidALT2.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
| Assertion | nfunidALT2 | ⊢ ( 𝜑 → Ⅎ 𝑥 ∪ 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfunidALT2.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
| 2 | nfaba1 | ⊢ Ⅎ 𝑥 { 𝑦 ∣ ∀ 𝑥 𝑦 ∈ 𝐴 } | |
| 3 | 2 | nfuni | ⊢ Ⅎ 𝑥 ∪ { 𝑦 ∣ ∀ 𝑥 𝑦 ∈ 𝐴 } | 
| 4 | nfnfc1 | ⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝐴 | |
| 5 | abidnf | ⊢ ( Ⅎ 𝑥 𝐴 → { 𝑦 ∣ ∀ 𝑥 𝑦 ∈ 𝐴 } = 𝐴 ) | |
| 6 | 5 | unieqd | ⊢ ( Ⅎ 𝑥 𝐴 → ∪ { 𝑦 ∣ ∀ 𝑥 𝑦 ∈ 𝐴 } = ∪ 𝐴 ) | 
| 7 | 4 6 | nfceqdf | ⊢ ( Ⅎ 𝑥 𝐴 → ( Ⅎ 𝑥 ∪ { 𝑦 ∣ ∀ 𝑥 𝑦 ∈ 𝐴 } ↔ Ⅎ 𝑥 ∪ 𝐴 ) ) | 
| 8 | 1 7 | syl | ⊢ ( 𝜑 → ( Ⅎ 𝑥 ∪ { 𝑦 ∣ ∀ 𝑥 𝑦 ∈ 𝐴 } ↔ Ⅎ 𝑥 ∪ 𝐴 ) ) | 
| 9 | 3 8 | mpbii | ⊢ ( 𝜑 → Ⅎ 𝑥 ∪ 𝐴 ) |