Metamath Proof Explorer


Theorem nfunidALT2

Description: Deduction version of nfuni . (Contributed by NM, 19-Nov-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis nfunidALT2.1 ( 𝜑 𝑥 𝐴 )
Assertion nfunidALT2 ( 𝜑 𝑥 𝐴 )

Proof

Step Hyp Ref Expression
1 nfunidALT2.1 ( 𝜑 𝑥 𝐴 )
2 nfaba1 𝑥 { 𝑦 ∣ ∀ 𝑥 𝑦𝐴 }
3 2 nfuni 𝑥 { 𝑦 ∣ ∀ 𝑥 𝑦𝐴 }
4 nfnfc1 𝑥 𝑥 𝐴
5 abidnf ( 𝑥 𝐴 → { 𝑦 ∣ ∀ 𝑥 𝑦𝐴 } = 𝐴 )
6 5 unieqd ( 𝑥 𝐴 { 𝑦 ∣ ∀ 𝑥 𝑦𝐴 } = 𝐴 )
7 4 6 nfceqdf ( 𝑥 𝐴 → ( 𝑥 { 𝑦 ∣ ∀ 𝑥 𝑦𝐴 } ↔ 𝑥 𝐴 ) )
8 1 7 syl ( 𝜑 → ( 𝑥 { 𝑦 ∣ ∀ 𝑥 𝑦𝐴 } ↔ 𝑥 𝐴 ) )
9 3 8 mpbii ( 𝜑 𝑥 𝐴 )