Metamath Proof Explorer


Theorem nfunidALT2

Description: Deduction version of nfuni . (Contributed by NM, 19-Nov-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis nfunidALT2.1 φ _ x A
Assertion nfunidALT2 φ _ x A

Proof

Step Hyp Ref Expression
1 nfunidALT2.1 φ _ x A
2 nfaba1 _ x y | x y A
3 2 nfuni _ x y | x y A
4 nfnfc1 x _ x A
5 abidnf _ x A y | x y A = A
6 5 unieqd _ x A y | x y A = A
7 4 6 nfceqdf _ x A _ x y | x y A _ x A
8 1 7 syl φ _ x y | x y A _ x A
9 3 8 mpbii φ _ x A