Metamath Proof Explorer


Theorem nfunidALT2

Description: Deduction version of nfuni . (Contributed by NM, 19-Nov-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis nfunidALT2.1
|- ( ph -> F/_ x A )
Assertion nfunidALT2
|- ( ph -> F/_ x U. A )

Proof

Step Hyp Ref Expression
1 nfunidALT2.1
 |-  ( ph -> F/_ x A )
2 nfaba1
 |-  F/_ x { y | A. x y e. A }
3 2 nfuni
 |-  F/_ x U. { y | A. x y e. A }
4 nfnfc1
 |-  F/ x F/_ x A
5 abidnf
 |-  ( F/_ x A -> { y | A. x y e. A } = A )
6 5 unieqd
 |-  ( F/_ x A -> U. { y | A. x y e. A } = U. A )
7 4 6 nfceqdf
 |-  ( F/_ x A -> ( F/_ x U. { y | A. x y e. A } <-> F/_ x U. A ) )
8 1 7 syl
 |-  ( ph -> ( F/_ x U. { y | A. x y e. A } <-> F/_ x U. A ) )
9 3 8 mpbii
 |-  ( ph -> F/_ x U. A )