Description: Deduction version of nfuni . (Contributed by NM, 19-Nov-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nfunidALT2.1 | |- ( ph -> F/_ x A ) | |
| Assertion | nfunidALT2 | |- ( ph -> F/_ x U. A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfunidALT2.1 | |- ( ph -> F/_ x A ) | |
| 2 | nfaba1 |  |-  F/_ x { y | A. x y e. A } | |
| 3 | 2 | nfuni |  |-  F/_ x U. { y | A. x y e. A } | 
| 4 | nfnfc1 | |- F/ x F/_ x A | |
| 5 | abidnf |  |-  ( F/_ x A -> { y | A. x y e. A } = A ) | |
| 6 | 5 | unieqd |  |-  ( F/_ x A -> U. { y | A. x y e. A } = U. A ) | 
| 7 | 4 6 | nfceqdf |  |-  ( F/_ x A -> ( F/_ x U. { y | A. x y e. A } <-> F/_ x U. A ) ) | 
| 8 | 1 7 | syl |  |-  ( ph -> ( F/_ x U. { y | A. x y e. A } <-> F/_ x U. A ) ) | 
| 9 | 3 8 | mpbii | |- ( ph -> F/_ x U. A ) |