Description: Deduction version of nfuni . (Contributed by NM, 19-Nov-2020) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nfunidALT2.1 | |- ( ph -> F/_ x A ) |
|
Assertion | nfunidALT2 | |- ( ph -> F/_ x U. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfunidALT2.1 | |- ( ph -> F/_ x A ) |
|
2 | nfaba1 | |- F/_ x { y | A. x y e. A } |
|
3 | 2 | nfuni | |- F/_ x U. { y | A. x y e. A } |
4 | nfnfc1 | |- F/ x F/_ x A |
|
5 | abidnf | |- ( F/_ x A -> { y | A. x y e. A } = A ) |
|
6 | 5 | unieqd | |- ( F/_ x A -> U. { y | A. x y e. A } = U. A ) |
7 | 4 6 | nfceqdf | |- ( F/_ x A -> ( F/_ x U. { y | A. x y e. A } <-> F/_ x U. A ) ) |
8 | 1 7 | syl | |- ( ph -> ( F/_ x U. { y | A. x y e. A } <-> F/_ x U. A ) ) |
9 | 3 8 | mpbii | |- ( ph -> F/_ x U. A ) |