Metamath Proof Explorer


Theorem nfe2

Description: An inner existential quantifier's variable is bound. (Contributed by SN, 11-Feb-2026)

Ref Expression
Assertion nfe2 𝑥𝑦𝑥 𝜑

Proof

Step Hyp Ref Expression
1 excom ( ∃ 𝑦𝑥 𝜑 ↔ ∃ 𝑥𝑦 𝜑 )
2 nfe1 𝑥𝑥𝑦 𝜑
3 1 2 nfxfr 𝑥𝑦𝑥 𝜑