Metamath Proof Explorer


Theorem nfexa2

Description: An inner universal quantifier's variable is bound. (Contributed by SN, 11-Feb-2026)

Ref Expression
Assertion nfexa2 𝑥𝑦𝑥 𝜑

Proof

Step Hyp Ref Expression
1 hbe1a ( ∃ 𝑥𝑥 𝜑 → ∀ 𝑥 𝜑 )
2 1 nfexhe 𝑥𝑦𝑥 𝜑