Metamath Proof Explorer


Theorem nfexa2

Description: An inner universal quantifier's variable is bound. (Contributed by SN, 11-Feb-2026)

Ref Expression
Assertion nfexa2
|- F/ x E. y A. x ph

Proof

Step Hyp Ref Expression
1 hbe1a
 |-  ( E. x A. x ph -> A. x ph )
2 1 nfexhe
 |-  F/ x E. y A. x ph