Metamath Proof Explorer


Theorem nfexhe

Description: Version of nfex with the existential dual to the 'h' hypothesis, avoiding ax-12 . (Contributed by SN, 11-Feb-2026)

Ref Expression
Hypothesis nfexhe.1
|- ( E. x ph -> ph )
Assertion nfexhe
|- F/ x E. y ph

Proof

Step Hyp Ref Expression
1 nfexhe.1
 |-  ( E. x ph -> ph )
2 hbe1
 |-  ( E. x E. y ph -> A. x E. x E. y ph )
3 excomim
 |-  ( E. x E. y ph -> E. y E. x ph )
4 1 eximi
 |-  ( E. y E. x ph -> E. y ph )
5 3 4 syl
 |-  ( E. x E. y ph -> E. y ph )
6 2 5 alrimih
 |-  ( E. x E. y ph -> A. x E. y ph )
7 6 nfi
 |-  F/ x E. y ph