Metamath Proof Explorer
Description: Version of nfex with the existential dual to the 'h' hypothesis,
avoiding ax-12 . (Contributed by SN, 11-Feb-2026)
|
|
Ref |
Expression |
|
Hypothesis |
nfexhe.1 |
⊢ ( ∃ 𝑥 𝜑 → 𝜑 ) |
|
Assertion |
nfexhe |
⊢ Ⅎ 𝑥 ∃ 𝑦 𝜑 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfexhe.1 |
⊢ ( ∃ 𝑥 𝜑 → 𝜑 ) |
| 2 |
|
hbe1 |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑥 ∃ 𝑦 𝜑 ) |
| 3 |
|
excomim |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 → ∃ 𝑦 ∃ 𝑥 𝜑 ) |
| 4 |
1
|
eximi |
⊢ ( ∃ 𝑦 ∃ 𝑥 𝜑 → ∃ 𝑦 𝜑 ) |
| 5 |
3 4
|
syl |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 → ∃ 𝑦 𝜑 ) |
| 6 |
2 5
|
alrimih |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) |
| 7 |
6
|
nfi |
⊢ Ⅎ 𝑥 ∃ 𝑦 𝜑 |