Metamath Proof Explorer


Theorem nfexhe

Description: Version of nfex with the existential dual to the 'h' hypothesis, avoiding ax-12 . (Contributed by SN, 11-Feb-2026)

Ref Expression
Hypothesis nfexhe.1 ( ∃ 𝑥 𝜑𝜑 )
Assertion nfexhe 𝑥𝑦 𝜑

Proof

Step Hyp Ref Expression
1 nfexhe.1 ( ∃ 𝑥 𝜑𝜑 )
2 hbe1 ( ∃ 𝑥𝑦 𝜑 → ∀ 𝑥𝑥𝑦 𝜑 )
3 excomim ( ∃ 𝑥𝑦 𝜑 → ∃ 𝑦𝑥 𝜑 )
4 1 eximi ( ∃ 𝑦𝑥 𝜑 → ∃ 𝑦 𝜑 )
5 3 4 syl ( ∃ 𝑥𝑦 𝜑 → ∃ 𝑦 𝜑 )
6 2 5 alrimih ( ∃ 𝑥𝑦 𝜑 → ∀ 𝑥𝑦 𝜑 )
7 6 nfi 𝑥𝑦 𝜑