| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfpo.r |
⊢ Ⅎ 𝑥 𝑅 |
| 2 |
|
nfpo.a |
⊢ Ⅎ 𝑥 𝐴 |
| 3 |
|
df-so |
⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑅 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) ) ) |
| 4 |
1 2
|
nfpo |
⊢ Ⅎ 𝑥 𝑅 Po 𝐴 |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑎 |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑏 |
| 7 |
5 1 6
|
nfbr |
⊢ Ⅎ 𝑥 𝑎 𝑅 𝑏 |
| 8 |
|
nfv |
⊢ Ⅎ 𝑥 𝑎 = 𝑏 |
| 9 |
6 1 5
|
nfbr |
⊢ Ⅎ 𝑥 𝑏 𝑅 𝑎 |
| 10 |
7 8 9
|
nf3or |
⊢ Ⅎ 𝑥 ( 𝑎 𝑅 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) |
| 11 |
2 10
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑅 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) |
| 12 |
2 11
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑅 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) |
| 13 |
4 12
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑅 Po 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑅 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) ) |
| 14 |
3 13
|
nfxfr |
⊢ Ⅎ 𝑥 𝑅 Or 𝐴 |