Metamath Proof Explorer


Theorem pocl

Description: Properties of partial order relation in class notation. (Contributed by NM, 27-Mar-1997)

Ref Expression
Assertion pocl ( 𝑅 Po 𝐴 → ( ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) ) )

Proof

Step Hyp Ref Expression
1 id ( 𝑥 = 𝐵𝑥 = 𝐵 )
2 1 1 breq12d ( 𝑥 = 𝐵 → ( 𝑥 𝑅 𝑥𝐵 𝑅 𝐵 ) )
3 2 notbid ( 𝑥 = 𝐵 → ( ¬ 𝑥 𝑅 𝑥 ↔ ¬ 𝐵 𝑅 𝐵 ) )
4 breq1 ( 𝑥 = 𝐵 → ( 𝑥 𝑅 𝑦𝐵 𝑅 𝑦 ) )
5 4 anbi1d ( 𝑥 = 𝐵 → ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) ↔ ( 𝐵 𝑅 𝑦𝑦 𝑅 𝑧 ) ) )
6 breq1 ( 𝑥 = 𝐵 → ( 𝑥 𝑅 𝑧𝐵 𝑅 𝑧 ) )
7 5 6 imbi12d ( 𝑥 = 𝐵 → ( ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ( ( 𝐵 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) )
8 3 7 anbi12d ( 𝑥 = 𝐵 → ( ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ) )
9 8 imbi2d ( 𝑥 = 𝐵 → ( ( 𝑅 Po 𝐴 → ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ↔ ( 𝑅 Po 𝐴 → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ) ) )
10 breq2 ( 𝑦 = 𝐶 → ( 𝐵 𝑅 𝑦𝐵 𝑅 𝐶 ) )
11 breq1 ( 𝑦 = 𝐶 → ( 𝑦 𝑅 𝑧𝐶 𝑅 𝑧 ) )
12 10 11 anbi12d ( 𝑦 = 𝐶 → ( ( 𝐵 𝑅 𝑦𝑦 𝑅 𝑧 ) ↔ ( 𝐵 𝑅 𝐶𝐶 𝑅 𝑧 ) ) )
13 12 imbi1d ( 𝑦 = 𝐶 → ( ( ( 𝐵 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ↔ ( ( 𝐵 𝑅 𝐶𝐶 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) )
14 13 anbi2d ( 𝑦 = 𝐶 → ( ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ↔ ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶𝐶 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ) )
15 14 imbi2d ( 𝑦 = 𝐶 → ( ( 𝑅 Po 𝐴 → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ) ↔ ( 𝑅 Po 𝐴 → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶𝐶 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ) ) )
16 breq2 ( 𝑧 = 𝐷 → ( 𝐶 𝑅 𝑧𝐶 𝑅 𝐷 ) )
17 16 anbi2d ( 𝑧 = 𝐷 → ( ( 𝐵 𝑅 𝐶𝐶 𝑅 𝑧 ) ↔ ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐷 ) ) )
18 breq2 ( 𝑧 = 𝐷 → ( 𝐵 𝑅 𝑧𝐵 𝑅 𝐷 ) )
19 17 18 imbi12d ( 𝑧 = 𝐷 → ( ( ( 𝐵 𝑅 𝐶𝐶 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ↔ ( ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) )
20 19 anbi2d ( 𝑧 = 𝐷 → ( ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶𝐶 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ↔ ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) ) )
21 20 imbi2d ( 𝑧 = 𝐷 → ( ( 𝑅 Po 𝐴 → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶𝐶 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ) ↔ ( 𝑅 Po 𝐴 → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) ) ) )
22 df-po ( 𝑅 Po 𝐴 ↔ ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) )
23 r3al ( ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥𝐴𝑦𝐴𝑧𝐴 ) → ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) )
24 22 23 sylbb ( 𝑅 Po 𝐴 → ∀ 𝑥𝑦𝑧 ( ( 𝑥𝐴𝑦𝐴𝑧𝐴 ) → ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) )
25 24 19.21bbi ( 𝑅 Po 𝐴 → ∀ 𝑧 ( ( 𝑥𝐴𝑦𝐴𝑧𝐴 ) → ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) )
26 25 19.21bi ( 𝑅 Po 𝐴 → ( ( 𝑥𝐴𝑦𝐴𝑧𝐴 ) → ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) )
27 26 com12 ( ( 𝑥𝐴𝑦𝐴𝑧𝐴 ) → ( 𝑅 Po 𝐴 → ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) )
28 9 15 21 27 vtocl3ga ( ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) → ( 𝑅 Po 𝐴 → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) ) )
29 28 com12 ( 𝑅 Po 𝐴 → ( ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) ) )