Metamath Proof Explorer


Theorem nic-idel

Description: Inference to remove the trailing term. (Contributed by Jeff Hoffman, 17-Nov-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis nic-idel.1 ( 𝜑 ⊼ ( 𝜒𝜓 ) )
Assertion nic-idel ( 𝜑 ⊼ ( 𝜒𝜒 ) )

Proof

Step Hyp Ref Expression
1 nic-idel.1 ( 𝜑 ⊼ ( 𝜒𝜓 ) )
2 nic-id ( 𝜒 ⊼ ( 𝜒𝜒 ) )
3 2 nic-isw1 ( ( 𝜒𝜒 ) ⊼ 𝜒 )
4 1 nic-imp ( ( ( 𝜒𝜒 ) ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ ( 𝜒𝜒 ) ) ⊼ ( 𝜑 ⊼ ( 𝜒𝜒 ) ) ) )
5 3 4 nic-mp ( 𝜑 ⊼ ( 𝜒𝜒 ) )