Metamath Proof Explorer


Theorem nmblore

Description: The norm of a bounded operator is a real number. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmblore.1 𝑋 = ( BaseSet ‘ 𝑈 )
nmblore.2 𝑌 = ( BaseSet ‘ 𝑊 )
nmblore.3 𝑁 = ( 𝑈 normOpOLD 𝑊 )
nmblore.5 𝐵 = ( 𝑈 BLnOp 𝑊 )
Assertion nmblore ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵 ) → ( 𝑁𝑇 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 nmblore.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 nmblore.2 𝑌 = ( BaseSet ‘ 𝑊 )
3 nmblore.3 𝑁 = ( 𝑈 normOpOLD 𝑊 )
4 nmblore.5 𝐵 = ( 𝑈 BLnOp 𝑊 )
5 1 2 4 blof ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵 ) → 𝑇 : 𝑋𝑌 )
6 1 2 3 nmogtmnf ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋𝑌 ) → -∞ < ( 𝑁𝑇 ) )
7 5 6 syld3an3 ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵 ) → -∞ < ( 𝑁𝑇 ) )
8 eqid ( 𝑈 LnOp 𝑊 ) = ( 𝑈 LnOp 𝑊 )
9 3 8 4 isblo ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇𝐵 ↔ ( 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ∧ ( 𝑁𝑇 ) < +∞ ) ) )
10 9 simplbda ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑇𝐵 ) → ( 𝑁𝑇 ) < +∞ )
11 10 3impa ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵 ) → ( 𝑁𝑇 ) < +∞ )
12 1 2 3 nmoxr ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋𝑌 ) → ( 𝑁𝑇 ) ∈ ℝ* )
13 5 12 syld3an3 ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵 ) → ( 𝑁𝑇 ) ∈ ℝ* )
14 xrrebnd ( ( 𝑁𝑇 ) ∈ ℝ* → ( ( 𝑁𝑇 ) ∈ ℝ ↔ ( -∞ < ( 𝑁𝑇 ) ∧ ( 𝑁𝑇 ) < +∞ ) ) )
15 13 14 syl ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵 ) → ( ( 𝑁𝑇 ) ∈ ℝ ↔ ( -∞ < ( 𝑁𝑇 ) ∧ ( 𝑁𝑇 ) < +∞ ) ) )
16 7 11 15 mpbir2and ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵 ) → ( 𝑁𝑇 ) ∈ ℝ )