Metamath Proof Explorer


Theorem nmfnxr

Description: The norm of any Hilbert space functional is an extended real. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmfnxr ( 𝑇 : ℋ ⟶ ℂ → ( normfn𝑇 ) ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 nmfnval ( 𝑇 : ℋ ⟶ ℂ → ( normfn𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇𝑦 ) ) ) } , ℝ* , < ) )
2 nmfnsetre ( 𝑇 : ℋ ⟶ ℂ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇𝑦 ) ) ) } ⊆ ℝ )
3 ressxr ℝ ⊆ ℝ*
4 2 3 sstrdi ( 𝑇 : ℋ ⟶ ℂ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇𝑦 ) ) ) } ⊆ ℝ* )
5 supxrcl ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇𝑦 ) ) ) } ⊆ ℝ* → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇𝑦 ) ) ) } , ℝ* , < ) ∈ ℝ* )
6 4 5 syl ( 𝑇 : ℋ ⟶ ℂ → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇𝑦 ) ) ) } , ℝ* , < ) ∈ ℝ* )
7 1 6 eqeltrd ( 𝑇 : ℋ ⟶ ℂ → ( normfn𝑇 ) ∈ ℝ* )