| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmopcoadj.1 |
⊢ 𝑇 ∈ BndLinOp |
| 2 |
1
|
nmopcoadj2i |
⊢ ( normop ‘ ( 𝑇 ∘ ( adjℎ ‘ 𝑇 ) ) ) = ( ( normop ‘ 𝑇 ) ↑ 2 ) |
| 3 |
2
|
eqeq1i |
⊢ ( ( normop ‘ ( 𝑇 ∘ ( adjℎ ‘ 𝑇 ) ) ) = 0 ↔ ( ( normop ‘ 𝑇 ) ↑ 2 ) = 0 ) |
| 4 |
|
nmopre |
⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 5 |
1 4
|
ax-mp |
⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
| 6 |
5
|
recni |
⊢ ( normop ‘ 𝑇 ) ∈ ℂ |
| 7 |
6
|
sqeq0i |
⊢ ( ( ( normop ‘ 𝑇 ) ↑ 2 ) = 0 ↔ ( normop ‘ 𝑇 ) = 0 ) |
| 8 |
3 7
|
bitri |
⊢ ( ( normop ‘ ( 𝑇 ∘ ( adjℎ ‘ 𝑇 ) ) ) = 0 ↔ ( normop ‘ 𝑇 ) = 0 ) |
| 9 |
|
bdopln |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp ) |
| 10 |
1 9
|
ax-mp |
⊢ 𝑇 ∈ LinOp |
| 11 |
|
adjbdln |
⊢ ( 𝑇 ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) |
| 12 |
1 11
|
ax-mp |
⊢ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp |
| 13 |
|
bdopln |
⊢ ( ( adjℎ ‘ 𝑇 ) ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) ∈ LinOp ) |
| 14 |
12 13
|
ax-mp |
⊢ ( adjℎ ‘ 𝑇 ) ∈ LinOp |
| 15 |
10 14
|
lnopcoi |
⊢ ( 𝑇 ∘ ( adjℎ ‘ 𝑇 ) ) ∈ LinOp |
| 16 |
15
|
nmlnop0iHIL |
⊢ ( ( normop ‘ ( 𝑇 ∘ ( adjℎ ‘ 𝑇 ) ) ) = 0 ↔ ( 𝑇 ∘ ( adjℎ ‘ 𝑇 ) ) = 0hop ) |
| 17 |
10
|
nmlnop0iHIL |
⊢ ( ( normop ‘ 𝑇 ) = 0 ↔ 𝑇 = 0hop ) |
| 18 |
8 16 17
|
3bitr3i |
⊢ ( ( 𝑇 ∘ ( adjℎ ‘ 𝑇 ) ) = 0hop ↔ 𝑇 = 0hop ) |