| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmopcoadj.1 |
|- T e. BndLinOp |
| 2 |
1
|
nmopcoadj2i |
|- ( normop ` ( T o. ( adjh ` T ) ) ) = ( ( normop ` T ) ^ 2 ) |
| 3 |
2
|
eqeq1i |
|- ( ( normop ` ( T o. ( adjh ` T ) ) ) = 0 <-> ( ( normop ` T ) ^ 2 ) = 0 ) |
| 4 |
|
nmopre |
|- ( T e. BndLinOp -> ( normop ` T ) e. RR ) |
| 5 |
1 4
|
ax-mp |
|- ( normop ` T ) e. RR |
| 6 |
5
|
recni |
|- ( normop ` T ) e. CC |
| 7 |
6
|
sqeq0i |
|- ( ( ( normop ` T ) ^ 2 ) = 0 <-> ( normop ` T ) = 0 ) |
| 8 |
3 7
|
bitri |
|- ( ( normop ` ( T o. ( adjh ` T ) ) ) = 0 <-> ( normop ` T ) = 0 ) |
| 9 |
|
bdopln |
|- ( T e. BndLinOp -> T e. LinOp ) |
| 10 |
1 9
|
ax-mp |
|- T e. LinOp |
| 11 |
|
adjbdln |
|- ( T e. BndLinOp -> ( adjh ` T ) e. BndLinOp ) |
| 12 |
1 11
|
ax-mp |
|- ( adjh ` T ) e. BndLinOp |
| 13 |
|
bdopln |
|- ( ( adjh ` T ) e. BndLinOp -> ( adjh ` T ) e. LinOp ) |
| 14 |
12 13
|
ax-mp |
|- ( adjh ` T ) e. LinOp |
| 15 |
10 14
|
lnopcoi |
|- ( T o. ( adjh ` T ) ) e. LinOp |
| 16 |
15
|
nmlnop0iHIL |
|- ( ( normop ` ( T o. ( adjh ` T ) ) ) = 0 <-> ( T o. ( adjh ` T ) ) = 0hop ) |
| 17 |
10
|
nmlnop0iHIL |
|- ( ( normop ` T ) = 0 <-> T = 0hop ) |
| 18 |
8 16 17
|
3bitr3i |
|- ( ( T o. ( adjh ` T ) ) = 0hop <-> T = 0hop ) |