| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0difffzod.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 2 |
|
nn0difffzod.2 |
⊢ ( 𝜑 → 𝑀 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) ) |
| 3 |
2
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝑀 ∈ ( 0 ..^ 𝑁 ) ) |
| 4 |
2
|
eldifad |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 5 |
|
elfzo0z |
⊢ ( 𝑀 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) ) |
| 6 |
5
|
biimpri |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) → 𝑀 ∈ ( 0 ..^ 𝑁 ) ) |
| 7 |
6
|
3expa |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 < 𝑁 ) → 𝑀 ∈ ( 0 ..^ 𝑁 ) ) |
| 8 |
7
|
con3i |
⊢ ( ¬ 𝑀 ∈ ( 0 ..^ 𝑁 ) → ¬ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 < 𝑁 ) ) |
| 9 |
|
imnan |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ) → ¬ 𝑀 < 𝑁 ) ↔ ¬ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 < 𝑁 ) ) |
| 10 |
8 9
|
sylibr |
⊢ ( ¬ 𝑀 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ) → ¬ 𝑀 < 𝑁 ) ) |
| 11 |
10
|
imp |
⊢ ( ( ¬ 𝑀 ∈ ( 0 ..^ 𝑁 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ) ) → ¬ 𝑀 < 𝑁 ) |
| 12 |
3 4 1 11
|
syl12anc |
⊢ ( 𝜑 → ¬ 𝑀 < 𝑁 ) |