Metamath Proof Explorer


Theorem norm-iii

Description: Theorem 3.3(iii) of Beran p. 97. (Contributed by NM, 25-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion norm-iii ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( norm ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( norm𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 fvoveq1 ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( norm ‘ ( 𝐴 · 𝐵 ) ) = ( norm ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) )
2 fveq2 ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( abs ‘ 𝐴 ) = ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) )
3 2 oveq1d ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( abs ‘ 𝐴 ) · ( norm𝐵 ) ) = ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( norm𝐵 ) ) )
4 1 3 eqeq12d ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( norm ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( norm𝐵 ) ) ↔ ( norm ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) = ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( norm𝐵 ) ) ) )
5 oveq2 ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) → ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) )
6 5 fveq2d ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) → ( norm ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) = ( norm ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) ) )
7 fveq2 ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) → ( norm𝐵 ) = ( norm ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) )
8 7 oveq2d ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) → ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( norm𝐵 ) ) = ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( norm ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) ) )
9 6 8 eqeq12d ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) → ( ( norm ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) = ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( norm𝐵 ) ) ↔ ( norm ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) ) = ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( norm ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) ) ) )
10 0cn 0 ∈ ℂ
11 10 elimel if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ∈ ℂ
12 ifhvhv0 if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ∈ ℋ
13 11 12 norm-iii-i ( norm ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) ) = ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( norm ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) )
14 4 9 13 dedth2h ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( norm ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( norm𝐵 ) ) )