Step |
Hyp |
Ref |
Expression |
1 |
|
fvoveq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( normℎ ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( normℎ ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) ) ) |
2 |
|
fveq2 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( abs ‘ 𝐴 ) = ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) ) |
3 |
2
|
oveq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( abs ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) = ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( normℎ ‘ 𝐵 ) ) ) |
4 |
1 3
|
eqeq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( normℎ ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ↔ ( normℎ ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) ) = ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( normℎ ‘ 𝐵 ) ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( normℎ ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) ) = ( normℎ ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( normℎ ‘ 𝐵 ) = ( normℎ ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) |
8 |
7
|
oveq2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( normℎ ‘ 𝐵 ) ) = ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( normℎ ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
9 |
6 8
|
eqeq12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( normℎ ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) ) = ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( normℎ ‘ 𝐵 ) ) ↔ ( normℎ ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( normℎ ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) ) |
10 |
|
0cn |
⊢ 0 ∈ ℂ |
11 |
10
|
elimel |
⊢ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ∈ ℂ |
12 |
|
ifhvhv0 |
⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ |
13 |
11 12
|
norm-iii-i |
⊢ ( normℎ ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) · ( normℎ ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) |
14 |
4 9 13
|
dedth2h |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ) |