Metamath Proof Explorer


Theorem norm-iii

Description: Theorem 3.3(iii) of Beran p. 97. (Contributed by NM, 25-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion norm-iii ABnormAB=AnormB

Proof

Step Hyp Ref Expression
1 fvoveq1 A=ifAA0normAB=normifAA0B
2 fveq2 A=ifAA0A=ifAA0
3 2 oveq1d A=ifAA0AnormB=ifAA0normB
4 1 3 eqeq12d A=ifAA0normAB=AnormBnormifAA0B=ifAA0normB
5 oveq2 B=ifBB0ifAA0B=ifAA0ifBB0
6 5 fveq2d B=ifBB0normifAA0B=normifAA0ifBB0
7 fveq2 B=ifBB0normB=normifBB0
8 7 oveq2d B=ifBB0ifAA0normB=ifAA0normifBB0
9 6 8 eqeq12d B=ifBB0normifAA0B=ifAA0normBnormifAA0ifBB0=ifAA0normifBB0
10 0cn 0
11 10 elimel ifAA0
12 ifhvhv0 ifBB0
13 11 12 norm-iii-i normifAA0ifBB0=ifAA0normifBB0
14 4 9 13 dedth2h ABnormAB=AnormB