| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nqerf |
⊢ [Q] : ( N × N ) ⟶ Q |
| 2 |
|
ffun |
⊢ ( [Q] : ( N × N ) ⟶ Q → Fun [Q] ) |
| 3 |
1 2
|
ax-mp |
⊢ Fun [Q] |
| 4 |
|
elpqn |
⊢ ( 𝐴 ∈ Q → 𝐴 ∈ ( N × N ) ) |
| 5 |
|
id |
⊢ ( 𝐴 ∈ Q → 𝐴 ∈ Q ) |
| 6 |
|
enqer |
⊢ ~Q Er ( N × N ) |
| 7 |
6
|
a1i |
⊢ ( 𝐴 ∈ Q → ~Q Er ( N × N ) ) |
| 8 |
7 4
|
erref |
⊢ ( 𝐴 ∈ Q → 𝐴 ~Q 𝐴 ) |
| 9 |
|
df-erq |
⊢ [Q] = ( ~Q ∩ ( ( N × N ) × Q ) ) |
| 10 |
9
|
breqi |
⊢ ( 𝐴 [Q] 𝐴 ↔ 𝐴 ( ~Q ∩ ( ( N × N ) × Q ) ) 𝐴 ) |
| 11 |
|
brinxp2 |
⊢ ( 𝐴 ( ~Q ∩ ( ( N × N ) × Q ) ) 𝐴 ↔ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐴 ∈ Q ) ∧ 𝐴 ~Q 𝐴 ) ) |
| 12 |
10 11
|
bitri |
⊢ ( 𝐴 [Q] 𝐴 ↔ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐴 ∈ Q ) ∧ 𝐴 ~Q 𝐴 ) ) |
| 13 |
4 5 8 12
|
syl21anbrc |
⊢ ( 𝐴 ∈ Q → 𝐴 [Q] 𝐴 ) |
| 14 |
|
funbrfv |
⊢ ( Fun [Q] → ( 𝐴 [Q] 𝐴 → ( [Q] ‘ 𝐴 ) = 𝐴 ) ) |
| 15 |
3 13 14
|
mpsyl |
⊢ ( 𝐴 ∈ Q → ( [Q] ‘ 𝐴 ) = 𝐴 ) |