Metamath Proof Explorer


Theorem nqereu

Description: There is a unique element of Q. equivalent to each element of N. X. N. . (Contributed by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)

Ref Expression
Assertion nqereu ( 𝐴 ∈ ( N × N ) → ∃! 𝑥Q 𝑥 ~Q 𝐴 )

Proof

Step Hyp Ref Expression
1 elxp2 ( 𝐴 ∈ ( N × N ) ↔ ∃ 𝑎N𝑏N 𝐴 = ⟨ 𝑎 , 𝑏 ⟩ )
2 pion ( 𝑏N𝑏 ∈ On )
3 suceloni ( 𝑏 ∈ On → suc 𝑏 ∈ On )
4 2 3 syl ( 𝑏N → suc 𝑏 ∈ On )
5 vex 𝑏 ∈ V
6 5 sucid 𝑏 ∈ suc 𝑏
7 eleq2 ( 𝑦 = suc 𝑏 → ( 𝑏𝑦𝑏 ∈ suc 𝑏 ) )
8 7 rspcev ( ( suc 𝑏 ∈ On ∧ 𝑏 ∈ suc 𝑏 ) → ∃ 𝑦 ∈ On 𝑏𝑦 )
9 4 6 8 sylancl ( 𝑏N → ∃ 𝑦 ∈ On 𝑏𝑦 )
10 9 adantl ( ( 𝑎N𝑏N ) → ∃ 𝑦 ∈ On 𝑏𝑦 )
11 elequ2 ( 𝑦 = 𝑚 → ( 𝑏𝑦𝑏𝑚 ) )
12 11 imbi1d ( 𝑦 = 𝑚 → ( ( 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) ↔ ( 𝑏𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) ) )
13 12 2ralbidv ( 𝑦 = 𝑚 → ( ∀ 𝑎N𝑏N ( 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) ↔ ∀ 𝑎N𝑏N ( 𝑏𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) ) )
14 opeq1 ( 𝑐 = 𝑎 → ⟨ 𝑐 , 𝑑 ⟩ = ⟨ 𝑎 , 𝑑 ⟩ )
15 14 breq2d ( 𝑐 = 𝑎 → ( 𝑥 ~Q𝑐 , 𝑑 ⟩ ↔ 𝑥 ~Q𝑎 , 𝑑 ⟩ ) )
16 15 rexbidv ( 𝑐 = 𝑎 → ( ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ↔ ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑑 ⟩ ) )
17 16 imbi2d ( 𝑐 = 𝑎 → ( ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ↔ ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑑 ⟩ ) ) )
18 elequ1 ( 𝑑 = 𝑏 → ( 𝑑𝑚𝑏𝑚 ) )
19 opeq2 ( 𝑑 = 𝑏 → ⟨ 𝑎 , 𝑑 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ )
20 19 breq2d ( 𝑑 = 𝑏 → ( 𝑥 ~Q𝑎 , 𝑑 ⟩ ↔ 𝑥 ~Q𝑎 , 𝑏 ⟩ ) )
21 20 rexbidv ( 𝑑 = 𝑏 → ( ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑑 ⟩ ↔ ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) )
22 18 21 imbi12d ( 𝑑 = 𝑏 → ( ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑑 ⟩ ) ↔ ( 𝑏𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) ) )
23 17 22 cbvral2vw ( ∀ 𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ↔ ∀ 𝑎N𝑏N ( 𝑏𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) )
24 23 ralbii ( ∀ 𝑚𝑦𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ↔ ∀ 𝑚𝑦𝑎N𝑏N ( 𝑏𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) )
25 rexnal ( ∃ 𝑧 ∈ ( N × N ) ¬ ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N 𝑏 ) ↔ ¬ ∀ 𝑧 ∈ ( N × N ) ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N 𝑏 ) )
26 pm4.63 ( ¬ ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N 𝑏 ) ↔ ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 ∧ ( 2nd𝑧 ) <N 𝑏 ) )
27 xp2nd ( 𝑧 ∈ ( N × N ) → ( 2nd𝑧 ) ∈ N )
28 ltpiord ( ( ( 2nd𝑧 ) ∈ N𝑏N ) → ( ( 2nd𝑧 ) <N 𝑏 ↔ ( 2nd𝑧 ) ∈ 𝑏 ) )
29 28 ancoms ( ( 𝑏N ∧ ( 2nd𝑧 ) ∈ N ) → ( ( 2nd𝑧 ) <N 𝑏 ↔ ( 2nd𝑧 ) ∈ 𝑏 ) )
30 27 29 sylan2 ( ( 𝑏N𝑧 ∈ ( N × N ) ) → ( ( 2nd𝑧 ) <N 𝑏 ↔ ( 2nd𝑧 ) ∈ 𝑏 ) )
31 30 adantll ( ( ( 𝑎N𝑏N ) ∧ 𝑧 ∈ ( N × N ) ) → ( ( 2nd𝑧 ) <N 𝑏 ↔ ( 2nd𝑧 ) ∈ 𝑏 ) )
32 31 anbi2d ( ( ( 𝑎N𝑏N ) ∧ 𝑧 ∈ ( N × N ) ) → ( ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 ∧ ( 2nd𝑧 ) <N 𝑏 ) ↔ ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 ∧ ( 2nd𝑧 ) ∈ 𝑏 ) ) )
33 26 32 syl5bb ( ( ( 𝑎N𝑏N ) ∧ 𝑧 ∈ ( N × N ) ) → ( ¬ ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N 𝑏 ) ↔ ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 ∧ ( 2nd𝑧 ) ∈ 𝑏 ) ) )
34 33 rexbidva ( ( 𝑎N𝑏N ) → ( ∃ 𝑧 ∈ ( N × N ) ¬ ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N 𝑏 ) ↔ ∃ 𝑧 ∈ ( N × N ) ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 ∧ ( 2nd𝑧 ) ∈ 𝑏 ) ) )
35 25 34 bitr3id ( ( 𝑎N𝑏N ) → ( ¬ ∀ 𝑧 ∈ ( N × N ) ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N 𝑏 ) ↔ ∃ 𝑧 ∈ ( N × N ) ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 ∧ ( 2nd𝑧 ) ∈ 𝑏 ) ) )
36 xp1st ( 𝑧 ∈ ( N × N ) → ( 1st𝑧 ) ∈ N )
37 elequ2 ( 𝑚 = 𝑏 → ( 𝑑𝑚𝑑𝑏 ) )
38 37 imbi1d ( 𝑚 = 𝑏 → ( ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ↔ ( 𝑑𝑏 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ) )
39 38 2ralbidv ( 𝑚 = 𝑏 → ( ∀ 𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ↔ ∀ 𝑐N𝑑N ( 𝑑𝑏 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ) )
40 39 rspccv ( ∀ 𝑚𝑦𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) → ( 𝑏𝑦 → ∀ 𝑐N𝑑N ( 𝑑𝑏 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ) )
41 opeq1 ( 𝑐 = ( 1st𝑧 ) → ⟨ 𝑐 , 𝑑 ⟩ = ⟨ ( 1st𝑧 ) , 𝑑 ⟩ )
42 41 breq2d ( 𝑐 = ( 1st𝑧 ) → ( 𝑥 ~Q𝑐 , 𝑑 ⟩ ↔ 𝑥 ~Q ⟨ ( 1st𝑧 ) , 𝑑 ⟩ ) )
43 42 rexbidv ( 𝑐 = ( 1st𝑧 ) → ( ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ↔ ∃ 𝑥Q 𝑥 ~Q ⟨ ( 1st𝑧 ) , 𝑑 ⟩ ) )
44 43 imbi2d ( 𝑐 = ( 1st𝑧 ) → ( ( 𝑑𝑏 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ↔ ( 𝑑𝑏 → ∃ 𝑥Q 𝑥 ~Q ⟨ ( 1st𝑧 ) , 𝑑 ⟩ ) ) )
45 44 ralbidv ( 𝑐 = ( 1st𝑧 ) → ( ∀ 𝑑N ( 𝑑𝑏 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ↔ ∀ 𝑑N ( 𝑑𝑏 → ∃ 𝑥Q 𝑥 ~Q ⟨ ( 1st𝑧 ) , 𝑑 ⟩ ) ) )
46 45 rspccv ( ∀ 𝑐N𝑑N ( 𝑑𝑏 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) → ( ( 1st𝑧 ) ∈ N → ∀ 𝑑N ( 𝑑𝑏 → ∃ 𝑥Q 𝑥 ~Q ⟨ ( 1st𝑧 ) , 𝑑 ⟩ ) ) )
47 eleq1 ( 𝑑 = ( 2nd𝑧 ) → ( 𝑑𝑏 ↔ ( 2nd𝑧 ) ∈ 𝑏 ) )
48 opeq2 ( 𝑑 = ( 2nd𝑧 ) → ⟨ ( 1st𝑧 ) , 𝑑 ⟩ = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
49 48 breq2d ( 𝑑 = ( 2nd𝑧 ) → ( 𝑥 ~Q ⟨ ( 1st𝑧 ) , 𝑑 ⟩ ↔ 𝑥 ~Q ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
50 49 rexbidv ( 𝑑 = ( 2nd𝑧 ) → ( ∃ 𝑥Q 𝑥 ~Q ⟨ ( 1st𝑧 ) , 𝑑 ⟩ ↔ ∃ 𝑥Q 𝑥 ~Q ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
51 47 50 imbi12d ( 𝑑 = ( 2nd𝑧 ) → ( ( 𝑑𝑏 → ∃ 𝑥Q 𝑥 ~Q ⟨ ( 1st𝑧 ) , 𝑑 ⟩ ) ↔ ( ( 2nd𝑧 ) ∈ 𝑏 → ∃ 𝑥Q 𝑥 ~Q ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ) )
52 51 rspccv ( ∀ 𝑑N ( 𝑑𝑏 → ∃ 𝑥Q 𝑥 ~Q ⟨ ( 1st𝑧 ) , 𝑑 ⟩ ) → ( ( 2nd𝑧 ) ∈ N → ( ( 2nd𝑧 ) ∈ 𝑏 → ∃ 𝑥Q 𝑥 ~Q ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ) )
53 46 52 syl6 ( ∀ 𝑐N𝑑N ( 𝑑𝑏 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) → ( ( 1st𝑧 ) ∈ N → ( ( 2nd𝑧 ) ∈ N → ( ( 2nd𝑧 ) ∈ 𝑏 → ∃ 𝑥Q 𝑥 ~Q ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ) ) )
54 40 53 syl6 ( ∀ 𝑚𝑦𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) → ( 𝑏𝑦 → ( ( 1st𝑧 ) ∈ N → ( ( 2nd𝑧 ) ∈ N → ( ( 2nd𝑧 ) ∈ 𝑏 → ∃ 𝑥Q 𝑥 ~Q ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ) ) ) )
55 54 imp ( ( ∀ 𝑚𝑦𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ∧ 𝑏𝑦 ) → ( ( 1st𝑧 ) ∈ N → ( ( 2nd𝑧 ) ∈ N → ( ( 2nd𝑧 ) ∈ 𝑏 → ∃ 𝑥Q 𝑥 ~Q ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ) ) )
56 36 55 syl5 ( ( ∀ 𝑚𝑦𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ∧ 𝑏𝑦 ) → ( 𝑧 ∈ ( N × N ) → ( ( 2nd𝑧 ) ∈ N → ( ( 2nd𝑧 ) ∈ 𝑏 → ∃ 𝑥Q 𝑥 ~Q ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ) ) )
57 27 56 mpdi ( ( ∀ 𝑚𝑦𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ∧ 𝑏𝑦 ) → ( 𝑧 ∈ ( N × N ) → ( ( 2nd𝑧 ) ∈ 𝑏 → ∃ 𝑥Q 𝑥 ~Q ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ) )
58 57 3imp ( ( ( ∀ 𝑚𝑦𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ∧ 𝑏𝑦 ) ∧ 𝑧 ∈ ( N × N ) ∧ ( 2nd𝑧 ) ∈ 𝑏 ) → ∃ 𝑥Q 𝑥 ~Q ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
59 1st2nd2 ( 𝑧 ∈ ( N × N ) → 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
60 59 breq2d ( 𝑧 ∈ ( N × N ) → ( 𝑥 ~Q 𝑧𝑥 ~Q ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
61 60 rexbidv ( 𝑧 ∈ ( N × N ) → ( ∃ 𝑥Q 𝑥 ~Q 𝑧 ↔ ∃ 𝑥Q 𝑥 ~Q ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
62 61 3ad2ant2 ( ( ( ∀ 𝑚𝑦𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ∧ 𝑏𝑦 ) ∧ 𝑧 ∈ ( N × N ) ∧ ( 2nd𝑧 ) ∈ 𝑏 ) → ( ∃ 𝑥Q 𝑥 ~Q 𝑧 ↔ ∃ 𝑥Q 𝑥 ~Q ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
63 58 62 mpbird ( ( ( ∀ 𝑚𝑦𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ∧ 𝑏𝑦 ) ∧ 𝑧 ∈ ( N × N ) ∧ ( 2nd𝑧 ) ∈ 𝑏 ) → ∃ 𝑥Q 𝑥 ~Q 𝑧 )
64 enqer ~Q Er ( N × N )
65 64 a1i ( ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧𝑥 ~Q 𝑧 ) → ~Q Er ( N × N ) )
66 simpr ( ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧𝑥 ~Q 𝑧 ) → 𝑥 ~Q 𝑧 )
67 simpl ( ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧𝑥 ~Q 𝑧 ) → ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 )
68 65 66 67 ertr4d ( ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧𝑥 ~Q 𝑧 ) → 𝑥 ~Q𝑎 , 𝑏 ⟩ )
69 68 ex ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ( 𝑥 ~Q 𝑧𝑥 ~Q𝑎 , 𝑏 ⟩ ) )
70 69 reximdv ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ( ∃ 𝑥Q 𝑥 ~Q 𝑧 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) )
71 63 70 syl5com ( ( ( ∀ 𝑚𝑦𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ∧ 𝑏𝑦 ) ∧ 𝑧 ∈ ( N × N ) ∧ ( 2nd𝑧 ) ∈ 𝑏 ) → ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) )
72 71 3expia ( ( ( ∀ 𝑚𝑦𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ∧ 𝑏𝑦 ) ∧ 𝑧 ∈ ( N × N ) ) → ( ( 2nd𝑧 ) ∈ 𝑏 → ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) ) )
73 72 impcomd ( ( ( ∀ 𝑚𝑦𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ∧ 𝑏𝑦 ) ∧ 𝑧 ∈ ( N × N ) ) → ( ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 ∧ ( 2nd𝑧 ) ∈ 𝑏 ) → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) )
74 73 rexlimdva ( ( ∀ 𝑚𝑦𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) ∧ 𝑏𝑦 ) → ( ∃ 𝑧 ∈ ( N × N ) ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 ∧ ( 2nd𝑧 ) ∈ 𝑏 ) → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) )
75 74 ex ( ∀ 𝑚𝑦𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) → ( 𝑏𝑦 → ( ∃ 𝑧 ∈ ( N × N ) ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 ∧ ( 2nd𝑧 ) ∈ 𝑏 ) → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) ) )
76 75 com3r ( ∃ 𝑧 ∈ ( N × N ) ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 ∧ ( 2nd𝑧 ) ∈ 𝑏 ) → ( ∀ 𝑚𝑦𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) → ( 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) ) )
77 35 76 syl6bi ( ( 𝑎N𝑏N ) → ( ¬ ∀ 𝑧 ∈ ( N × N ) ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N 𝑏 ) → ( ∀ 𝑚𝑦𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) → ( 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) ) ) )
78 77 com13 ( ∀ 𝑚𝑦𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) → ( ¬ ∀ 𝑧 ∈ ( N × N ) ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N 𝑏 ) → ( ( 𝑎N𝑏N ) → ( 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) ) ) )
79 mulcompi ( 𝑎 ·N 𝑏 ) = ( 𝑏 ·N 𝑎 )
80 enqbreq ( ( ( 𝑎N𝑏N ) ∧ ( 𝑎N𝑏N ) ) → ( ⟨ 𝑎 , 𝑏 ⟩ ~Q𝑎 , 𝑏 ⟩ ↔ ( 𝑎 ·N 𝑏 ) = ( 𝑏 ·N 𝑎 ) ) )
81 80 anidms ( ( 𝑎N𝑏N ) → ( ⟨ 𝑎 , 𝑏 ⟩ ~Q𝑎 , 𝑏 ⟩ ↔ ( 𝑎 ·N 𝑏 ) = ( 𝑏 ·N 𝑎 ) ) )
82 79 81 mpbiri ( ( 𝑎N𝑏N ) → ⟨ 𝑎 , 𝑏 ⟩ ~Q𝑎 , 𝑏 ⟩ )
83 opelxpi ( ( 𝑎N𝑏N ) → ⟨ 𝑎 , 𝑏 ⟩ ∈ ( N × N ) )
84 breq1 ( 𝑦 = ⟨ 𝑎 , 𝑏 ⟩ → ( 𝑦 ~Q 𝑧 ↔ ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 ) )
85 vex 𝑎 ∈ V
86 85 5 op2ndd ( 𝑦 = ⟨ 𝑎 , 𝑏 ⟩ → ( 2nd𝑦 ) = 𝑏 )
87 86 breq2d ( 𝑦 = ⟨ 𝑎 , 𝑏 ⟩ → ( ( 2nd𝑧 ) <N ( 2nd𝑦 ) ↔ ( 2nd𝑧 ) <N 𝑏 ) )
88 87 notbid ( 𝑦 = ⟨ 𝑎 , 𝑏 ⟩ → ( ¬ ( 2nd𝑧 ) <N ( 2nd𝑦 ) ↔ ¬ ( 2nd𝑧 ) <N 𝑏 ) )
89 84 88 imbi12d ( 𝑦 = ⟨ 𝑎 , 𝑏 ⟩ → ( ( 𝑦 ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N ( 2nd𝑦 ) ) ↔ ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N 𝑏 ) ) )
90 89 ralbidv ( 𝑦 = ⟨ 𝑎 , 𝑏 ⟩ → ( ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N ( 2nd𝑦 ) ) ↔ ∀ 𝑧 ∈ ( N × N ) ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N 𝑏 ) ) )
91 df-nq Q = { 𝑦 ∈ ( N × N ) ∣ ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N ( 2nd𝑦 ) ) }
92 90 91 elrab2 ( ⟨ 𝑎 , 𝑏 ⟩ ∈ Q ↔ ( ⟨ 𝑎 , 𝑏 ⟩ ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N 𝑏 ) ) )
93 92 simplbi2 ( ⟨ 𝑎 , 𝑏 ⟩ ∈ ( N × N ) → ( ∀ 𝑧 ∈ ( N × N ) ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N 𝑏 ) → ⟨ 𝑎 , 𝑏 ⟩ ∈ Q ) )
94 83 93 syl ( ( 𝑎N𝑏N ) → ( ∀ 𝑧 ∈ ( N × N ) ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N 𝑏 ) → ⟨ 𝑎 , 𝑏 ⟩ ∈ Q ) )
95 breq1 ( 𝑥 = ⟨ 𝑎 , 𝑏 ⟩ → ( 𝑥 ~Q𝑎 , 𝑏 ⟩ ↔ ⟨ 𝑎 , 𝑏 ⟩ ~Q𝑎 , 𝑏 ⟩ ) )
96 95 rspcev ( ( ⟨ 𝑎 , 𝑏 ⟩ ∈ Q ∧ ⟨ 𝑎 , 𝑏 ⟩ ~Q𝑎 , 𝑏 ⟩ ) → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ )
97 96 expcom ( ⟨ 𝑎 , 𝑏 ⟩ ~Q𝑎 , 𝑏 ⟩ → ( ⟨ 𝑎 , 𝑏 ⟩ ∈ Q → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) )
98 82 94 97 sylsyld ( ( 𝑎N𝑏N ) → ( ∀ 𝑧 ∈ ( N × N ) ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N 𝑏 ) → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) )
99 98 com12 ( ∀ 𝑧 ∈ ( N × N ) ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N 𝑏 ) → ( ( 𝑎N𝑏N ) → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) )
100 99 a1dd ( ∀ 𝑧 ∈ ( N × N ) ( ⟨ 𝑎 , 𝑏 ⟩ ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N 𝑏 ) → ( ( 𝑎N𝑏N ) → ( 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) ) )
101 78 100 pm2.61d2 ( ∀ 𝑚𝑦𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) → ( ( 𝑎N𝑏N ) → ( 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) ) )
102 101 ralrimivv ( ∀ 𝑚𝑦𝑐N𝑑N ( 𝑑𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑐 , 𝑑 ⟩ ) → ∀ 𝑎N𝑏N ( 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) )
103 24 102 sylbir ( ∀ 𝑚𝑦𝑎N𝑏N ( 𝑏𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) → ∀ 𝑎N𝑏N ( 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) )
104 103 a1i ( 𝑦 ∈ On → ( ∀ 𝑚𝑦𝑎N𝑏N ( 𝑏𝑚 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) → ∀ 𝑎N𝑏N ( 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) ) )
105 13 104 tfis2 ( 𝑦 ∈ On → ∀ 𝑎N𝑏N ( 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) )
106 rsp ( ∀ 𝑎N𝑏N ( 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) → ( 𝑎N → ∀ 𝑏N ( 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) ) )
107 105 106 syl ( 𝑦 ∈ On → ( 𝑎N → ∀ 𝑏N ( 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) ) )
108 rsp ( ∀ 𝑏N ( 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) → ( 𝑏N → ( 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) ) )
109 107 108 syl6 ( 𝑦 ∈ On → ( 𝑎N → ( 𝑏N → ( 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) ) ) )
110 109 impd ( 𝑦 ∈ On → ( ( 𝑎N𝑏N ) → ( 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) ) )
111 110 com12 ( ( 𝑎N𝑏N ) → ( 𝑦 ∈ On → ( 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) ) )
112 111 rexlimdv ( ( 𝑎N𝑏N ) → ( ∃ 𝑦 ∈ On 𝑏𝑦 → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) )
113 10 112 mpd ( ( 𝑎N𝑏N ) → ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ )
114 breq2 ( 𝐴 = ⟨ 𝑎 , 𝑏 ⟩ → ( 𝑥 ~Q 𝐴𝑥 ~Q𝑎 , 𝑏 ⟩ ) )
115 114 rexbidv ( 𝐴 = ⟨ 𝑎 , 𝑏 ⟩ → ( ∃ 𝑥Q 𝑥 ~Q 𝐴 ↔ ∃ 𝑥Q 𝑥 ~Q𝑎 , 𝑏 ⟩ ) )
116 113 115 syl5ibrcom ( ( 𝑎N𝑏N ) → ( 𝐴 = ⟨ 𝑎 , 𝑏 ⟩ → ∃ 𝑥Q 𝑥 ~Q 𝐴 ) )
117 116 rexlimivv ( ∃ 𝑎N𝑏N 𝐴 = ⟨ 𝑎 , 𝑏 ⟩ → ∃ 𝑥Q 𝑥 ~Q 𝐴 )
118 1 117 sylbi ( 𝐴 ∈ ( N × N ) → ∃ 𝑥Q 𝑥 ~Q 𝐴 )
119 breq2 ( 𝑎 = 𝐴 → ( 𝑥 ~Q 𝑎𝑥 ~Q 𝐴 ) )
120 breq2 ( 𝑎 = 𝐴 → ( 𝑦 ~Q 𝑎𝑦 ~Q 𝐴 ) )
121 119 120 anbi12d ( 𝑎 = 𝐴 → ( ( 𝑥 ~Q 𝑎𝑦 ~Q 𝑎 ) ↔ ( 𝑥 ~Q 𝐴𝑦 ~Q 𝐴 ) ) )
122 121 imbi1d ( 𝑎 = 𝐴 → ( ( ( 𝑥 ~Q 𝑎𝑦 ~Q 𝑎 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑥 ~Q 𝐴𝑦 ~Q 𝐴 ) → 𝑥 = 𝑦 ) ) )
123 122 2ralbidv ( 𝑎 = 𝐴 → ( ∀ 𝑥Q𝑦Q ( ( 𝑥 ~Q 𝑎𝑦 ~Q 𝑎 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥Q𝑦Q ( ( 𝑥 ~Q 𝐴𝑦 ~Q 𝐴 ) → 𝑥 = 𝑦 ) ) )
124 64 a1i ( ( 𝑥 ~Q 𝑎𝑦 ~Q 𝑎 ) → ~Q Er ( N × N ) )
125 simpl ( ( 𝑥 ~Q 𝑎𝑦 ~Q 𝑎 ) → 𝑥 ~Q 𝑎 )
126 simpr ( ( 𝑥 ~Q 𝑎𝑦 ~Q 𝑎 ) → 𝑦 ~Q 𝑎 )
127 124 125 126 ertr4d ( ( 𝑥 ~Q 𝑎𝑦 ~Q 𝑎 ) → 𝑥 ~Q 𝑦 )
128 mulcompi ( ( 2nd𝑥 ) ·N ( 1st𝑥 ) ) = ( ( 1st𝑥 ) ·N ( 2nd𝑥 ) )
129 elpqn ( 𝑦Q𝑦 ∈ ( N × N ) )
130 breq1 ( 𝑦 = 𝑥 → ( 𝑦 ~Q 𝑧𝑥 ~Q 𝑧 ) )
131 fveq2 ( 𝑦 = 𝑥 → ( 2nd𝑦 ) = ( 2nd𝑥 ) )
132 131 breq2d ( 𝑦 = 𝑥 → ( ( 2nd𝑧 ) <N ( 2nd𝑦 ) ↔ ( 2nd𝑧 ) <N ( 2nd𝑥 ) ) )
133 132 notbid ( 𝑦 = 𝑥 → ( ¬ ( 2nd𝑧 ) <N ( 2nd𝑦 ) ↔ ¬ ( 2nd𝑧 ) <N ( 2nd𝑥 ) ) )
134 130 133 imbi12d ( 𝑦 = 𝑥 → ( ( 𝑦 ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N ( 2nd𝑦 ) ) ↔ ( 𝑥 ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N ( 2nd𝑥 ) ) ) )
135 134 ralbidv ( 𝑦 = 𝑥 → ( ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N ( 2nd𝑦 ) ) ↔ ∀ 𝑧 ∈ ( N × N ) ( 𝑥 ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N ( 2nd𝑥 ) ) ) )
136 135 91 elrab2 ( 𝑥Q ↔ ( 𝑥 ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( 𝑥 ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N ( 2nd𝑥 ) ) ) )
137 136 simprbi ( 𝑥Q → ∀ 𝑧 ∈ ( N × N ) ( 𝑥 ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N ( 2nd𝑥 ) ) )
138 breq2 ( 𝑧 = 𝑦 → ( 𝑥 ~Q 𝑧𝑥 ~Q 𝑦 ) )
139 fveq2 ( 𝑧 = 𝑦 → ( 2nd𝑧 ) = ( 2nd𝑦 ) )
140 139 breq1d ( 𝑧 = 𝑦 → ( ( 2nd𝑧 ) <N ( 2nd𝑥 ) ↔ ( 2nd𝑦 ) <N ( 2nd𝑥 ) ) )
141 140 notbid ( 𝑧 = 𝑦 → ( ¬ ( 2nd𝑧 ) <N ( 2nd𝑥 ) ↔ ¬ ( 2nd𝑦 ) <N ( 2nd𝑥 ) ) )
142 138 141 imbi12d ( 𝑧 = 𝑦 → ( ( 𝑥 ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N ( 2nd𝑥 ) ) ↔ ( 𝑥 ~Q 𝑦 → ¬ ( 2nd𝑦 ) <N ( 2nd𝑥 ) ) ) )
143 142 rspcva ( ( 𝑦 ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( 𝑥 ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N ( 2nd𝑥 ) ) ) → ( 𝑥 ~Q 𝑦 → ¬ ( 2nd𝑦 ) <N ( 2nd𝑥 ) ) )
144 129 137 143 syl2anr ( ( 𝑥Q𝑦Q ) → ( 𝑥 ~Q 𝑦 → ¬ ( 2nd𝑦 ) <N ( 2nd𝑥 ) ) )
145 144 imp ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → ¬ ( 2nd𝑦 ) <N ( 2nd𝑥 ) )
146 elpqn ( 𝑥Q𝑥 ∈ ( N × N ) )
147 91 rabeq2i ( 𝑦Q ↔ ( 𝑦 ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N ( 2nd𝑦 ) ) ) )
148 147 simprbi ( 𝑦Q → ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N ( 2nd𝑦 ) ) )
149 breq2 ( 𝑧 = 𝑥 → ( 𝑦 ~Q 𝑧𝑦 ~Q 𝑥 ) )
150 fveq2 ( 𝑧 = 𝑥 → ( 2nd𝑧 ) = ( 2nd𝑥 ) )
151 150 breq1d ( 𝑧 = 𝑥 → ( ( 2nd𝑧 ) <N ( 2nd𝑦 ) ↔ ( 2nd𝑥 ) <N ( 2nd𝑦 ) ) )
152 151 notbid ( 𝑧 = 𝑥 → ( ¬ ( 2nd𝑧 ) <N ( 2nd𝑦 ) ↔ ¬ ( 2nd𝑥 ) <N ( 2nd𝑦 ) ) )
153 149 152 imbi12d ( 𝑧 = 𝑥 → ( ( 𝑦 ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N ( 2nd𝑦 ) ) ↔ ( 𝑦 ~Q 𝑥 → ¬ ( 2nd𝑥 ) <N ( 2nd𝑦 ) ) ) )
154 153 rspcva ( ( 𝑥 ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd𝑧 ) <N ( 2nd𝑦 ) ) ) → ( 𝑦 ~Q 𝑥 → ¬ ( 2nd𝑥 ) <N ( 2nd𝑦 ) ) )
155 146 148 154 syl2an ( ( 𝑥Q𝑦Q ) → ( 𝑦 ~Q 𝑥 → ¬ ( 2nd𝑥 ) <N ( 2nd𝑦 ) ) )
156 64 a1i ( 𝑥 ~Q 𝑦 → ~Q Er ( N × N ) )
157 id ( 𝑥 ~Q 𝑦𝑥 ~Q 𝑦 )
158 156 157 ersym ( 𝑥 ~Q 𝑦𝑦 ~Q 𝑥 )
159 155 158 impel ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → ¬ ( 2nd𝑥 ) <N ( 2nd𝑦 ) )
160 xp2nd ( 𝑥 ∈ ( N × N ) → ( 2nd𝑥 ) ∈ N )
161 146 160 syl ( 𝑥Q → ( 2nd𝑥 ) ∈ N )
162 161 ad2antrr ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → ( 2nd𝑥 ) ∈ N )
163 xp2nd ( 𝑦 ∈ ( N × N ) → ( 2nd𝑦 ) ∈ N )
164 129 163 syl ( 𝑦Q → ( 2nd𝑦 ) ∈ N )
165 164 ad2antlr ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → ( 2nd𝑦 ) ∈ N )
166 ltsopi <N Or N
167 sotric ( ( <N Or N ∧ ( ( 2nd𝑥 ) ∈ N ∧ ( 2nd𝑦 ) ∈ N ) ) → ( ( 2nd𝑥 ) <N ( 2nd𝑦 ) ↔ ¬ ( ( 2nd𝑥 ) = ( 2nd𝑦 ) ∨ ( 2nd𝑦 ) <N ( 2nd𝑥 ) ) ) )
168 166 167 mpan ( ( ( 2nd𝑥 ) ∈ N ∧ ( 2nd𝑦 ) ∈ N ) → ( ( 2nd𝑥 ) <N ( 2nd𝑦 ) ↔ ¬ ( ( 2nd𝑥 ) = ( 2nd𝑦 ) ∨ ( 2nd𝑦 ) <N ( 2nd𝑥 ) ) ) )
169 168 notbid ( ( ( 2nd𝑥 ) ∈ N ∧ ( 2nd𝑦 ) ∈ N ) → ( ¬ ( 2nd𝑥 ) <N ( 2nd𝑦 ) ↔ ¬ ¬ ( ( 2nd𝑥 ) = ( 2nd𝑦 ) ∨ ( 2nd𝑦 ) <N ( 2nd𝑥 ) ) ) )
170 notnotb ( ( ( 2nd𝑥 ) = ( 2nd𝑦 ) ∨ ( 2nd𝑦 ) <N ( 2nd𝑥 ) ) ↔ ¬ ¬ ( ( 2nd𝑥 ) = ( 2nd𝑦 ) ∨ ( 2nd𝑦 ) <N ( 2nd𝑥 ) ) )
171 169 170 bitr4di ( ( ( 2nd𝑥 ) ∈ N ∧ ( 2nd𝑦 ) ∈ N ) → ( ¬ ( 2nd𝑥 ) <N ( 2nd𝑦 ) ↔ ( ( 2nd𝑥 ) = ( 2nd𝑦 ) ∨ ( 2nd𝑦 ) <N ( 2nd𝑥 ) ) ) )
172 162 165 171 syl2anc ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ¬ ( 2nd𝑥 ) <N ( 2nd𝑦 ) ↔ ( ( 2nd𝑥 ) = ( 2nd𝑦 ) ∨ ( 2nd𝑦 ) <N ( 2nd𝑥 ) ) ) )
173 159 172 mpbid ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 2nd𝑥 ) = ( 2nd𝑦 ) ∨ ( 2nd𝑦 ) <N ( 2nd𝑥 ) ) )
174 173 ord ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ¬ ( 2nd𝑥 ) = ( 2nd𝑦 ) → ( 2nd𝑦 ) <N ( 2nd𝑥 ) ) )
175 145 174 mt3d ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → ( 2nd𝑥 ) = ( 2nd𝑦 ) )
176 175 oveq2d ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 1st𝑥 ) ·N ( 2nd𝑥 ) ) = ( ( 1st𝑥 ) ·N ( 2nd𝑦 ) ) )
177 128 176 syl5eq ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 2nd𝑥 ) ·N ( 1st𝑥 ) ) = ( ( 1st𝑥 ) ·N ( 2nd𝑦 ) ) )
178 1st2nd2 ( 𝑥 ∈ ( N × N ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
179 1st2nd2 ( 𝑦 ∈ ( N × N ) → 𝑦 = ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ )
180 178 179 breqan12d ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( 𝑥 ~Q 𝑦 ↔ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ~Q ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) )
181 xp1st ( 𝑥 ∈ ( N × N ) → ( 1st𝑥 ) ∈ N )
182 181 160 jca ( 𝑥 ∈ ( N × N ) → ( ( 1st𝑥 ) ∈ N ∧ ( 2nd𝑥 ) ∈ N ) )
183 xp1st ( 𝑦 ∈ ( N × N ) → ( 1st𝑦 ) ∈ N )
184 183 163 jca ( 𝑦 ∈ ( N × N ) → ( ( 1st𝑦 ) ∈ N ∧ ( 2nd𝑦 ) ∈ N ) )
185 enqbreq ( ( ( ( 1st𝑥 ) ∈ N ∧ ( 2nd𝑥 ) ∈ N ) ∧ ( ( 1st𝑦 ) ∈ N ∧ ( 2nd𝑦 ) ∈ N ) ) → ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ~Q ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ↔ ( ( 1st𝑥 ) ·N ( 2nd𝑦 ) ) = ( ( 2nd𝑥 ) ·N ( 1st𝑦 ) ) ) )
186 182 184 185 syl2an ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ~Q ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ↔ ( ( 1st𝑥 ) ·N ( 2nd𝑦 ) ) = ( ( 2nd𝑥 ) ·N ( 1st𝑦 ) ) ) )
187 180 186 bitrd ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( 𝑥 ~Q 𝑦 ↔ ( ( 1st𝑥 ) ·N ( 2nd𝑦 ) ) = ( ( 2nd𝑥 ) ·N ( 1st𝑦 ) ) ) )
188 146 129 187 syl2an ( ( 𝑥Q𝑦Q ) → ( 𝑥 ~Q 𝑦 ↔ ( ( 1st𝑥 ) ·N ( 2nd𝑦 ) ) = ( ( 2nd𝑥 ) ·N ( 1st𝑦 ) ) ) )
189 188 biimpa ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 1st𝑥 ) ·N ( 2nd𝑦 ) ) = ( ( 2nd𝑥 ) ·N ( 1st𝑦 ) ) )
190 177 189 eqtrd ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 2nd𝑥 ) ·N ( 1st𝑥 ) ) = ( ( 2nd𝑥 ) ·N ( 1st𝑦 ) ) )
191 146 ad2antrr ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑥 ∈ ( N × N ) )
192 mulcanpi ( ( ( 2nd𝑥 ) ∈ N ∧ ( 1st𝑥 ) ∈ N ) → ( ( ( 2nd𝑥 ) ·N ( 1st𝑥 ) ) = ( ( 2nd𝑥 ) ·N ( 1st𝑦 ) ) ↔ ( 1st𝑥 ) = ( 1st𝑦 ) ) )
193 160 181 192 syl2anc ( 𝑥 ∈ ( N × N ) → ( ( ( 2nd𝑥 ) ·N ( 1st𝑥 ) ) = ( ( 2nd𝑥 ) ·N ( 1st𝑦 ) ) ↔ ( 1st𝑥 ) = ( 1st𝑦 ) ) )
194 191 193 syl ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( ( 2nd𝑥 ) ·N ( 1st𝑥 ) ) = ( ( 2nd𝑥 ) ·N ( 1st𝑦 ) ) ↔ ( 1st𝑥 ) = ( 1st𝑦 ) ) )
195 190 194 mpbid ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → ( 1st𝑥 ) = ( 1st𝑦 ) )
196 195 175 opeq12d ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ = ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ )
197 191 178 syl ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
198 129 ad2antlr ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑦 ∈ ( N × N ) )
199 198 179 syl ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑦 = ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ )
200 196 197 199 3eqtr4d ( ( ( 𝑥Q𝑦Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑥 = 𝑦 )
201 200 ex ( ( 𝑥Q𝑦Q ) → ( 𝑥 ~Q 𝑦𝑥 = 𝑦 ) )
202 127 201 syl5 ( ( 𝑥Q𝑦Q ) → ( ( 𝑥 ~Q 𝑎𝑦 ~Q 𝑎 ) → 𝑥 = 𝑦 ) )
203 202 rgen2 𝑥Q𝑦Q ( ( 𝑥 ~Q 𝑎𝑦 ~Q 𝑎 ) → 𝑥 = 𝑦 )
204 123 203 vtoclg ( 𝐴 ∈ ( N × N ) → ∀ 𝑥Q𝑦Q ( ( 𝑥 ~Q 𝐴𝑦 ~Q 𝐴 ) → 𝑥 = 𝑦 ) )
205 breq1 ( 𝑥 = 𝑦 → ( 𝑥 ~Q 𝐴𝑦 ~Q 𝐴 ) )
206 205 reu4 ( ∃! 𝑥Q 𝑥 ~Q 𝐴 ↔ ( ∃ 𝑥Q 𝑥 ~Q 𝐴 ∧ ∀ 𝑥Q𝑦Q ( ( 𝑥 ~Q 𝐴𝑦 ~Q 𝐴 ) → 𝑥 = 𝑦 ) ) )
207 118 204 206 sylanbrc ( 𝐴 ∈ ( N × N ) → ∃! 𝑥Q 𝑥 ~Q 𝐴 )