Description: Negation of subclass relationship. (Contributed by Glauco Siliprandi, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nssrex | ⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nss | ⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 2 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 3 | 1 2 | bitr4i | ⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) |