Metamath Proof Explorer


Theorem nssrex

Description: Negation of subclass relationship. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion nssrex ¬ABxA¬xB

Proof

Step Hyp Ref Expression
1 nss ¬ABxxA¬xB
2 df-rex xA¬xBxxA¬xB
3 1 2 bitr4i ¬ABxA¬xB