Metamath Proof Explorer


Theorem ntrk1k3eqk13

Description: An interior function is both monotone and sub-linear if and only if it is finitely linear. (Contributed by RP, 18-Jun-2021)

Ref Expression
Assertion ntrk1k3eqk13 ( ( ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( 𝑠𝑡 → ( 𝐼𝑠 ) ⊆ ( 𝐼𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠𝑡 ) ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑠𝑡 ) ) = ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) )

Proof

Step Hyp Ref Expression
1 r19.26-2 ( ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ ( 𝑠𝑡 ) ) ⊆ ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) ∧ ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠𝑡 ) ) ) ↔ ( ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑠𝑡 ) ) ⊆ ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠𝑡 ) ) ) )
2 eqss ( ( 𝐼 ‘ ( 𝑠𝑡 ) ) = ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) ↔ ( ( 𝐼 ‘ ( 𝑠𝑡 ) ) ⊆ ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) ∧ ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠𝑡 ) ) ) )
3 2 2ralbii ( ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑠𝑡 ) ) = ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ ( 𝑠𝑡 ) ) ⊆ ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) ∧ ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠𝑡 ) ) ) )
4 isotone2 ( ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( 𝑠𝑡 → ( 𝐼𝑠 ) ⊆ ( 𝐼𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑠𝑡 ) ) ⊆ ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) )
5 4 anbi1i ( ( ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( 𝑠𝑡 → ( 𝐼𝑠 ) ⊆ ( 𝐼𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠𝑡 ) ) ) ↔ ( ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑠𝑡 ) ) ⊆ ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠𝑡 ) ) ) )
6 1 3 5 3bitr4ri ( ( ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( 𝑠𝑡 → ( 𝐼𝑠 ) ⊆ ( 𝐼𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠𝑡 ) ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑠𝑡 ) ) = ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) )