| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r19.26-2 | ⊢ ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) )  ⊆  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ∧  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ⊆  ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) ) )  ↔  ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) )  ⊆  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ⊆  ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) ) ) ) | 
						
							| 2 |  | eqss | ⊢ ( ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) )  =  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ↔  ( ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) )  ⊆  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ∧  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ⊆  ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) ) ) ) | 
						
							| 3 | 2 | 2ralbii | ⊢ ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) )  =  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ↔  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) )  ⊆  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ∧  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ⊆  ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) ) ) ) | 
						
							| 4 |  | isotone2 | ⊢ ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( 𝑠  ⊆  𝑡  →  ( 𝐼 ‘ 𝑠 )  ⊆  ( 𝐼 ‘ 𝑡 ) )  ↔  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) )  ⊆  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) ) ) | 
						
							| 5 | 4 | anbi1i | ⊢ ( ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( 𝑠  ⊆  𝑡  →  ( 𝐼 ‘ 𝑠 )  ⊆  ( 𝐼 ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ⊆  ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) ) )  ↔  ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) )  ⊆  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ⊆  ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) ) ) ) | 
						
							| 6 | 1 3 5 | 3bitr4ri | ⊢ ( ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( 𝑠  ⊆  𝑡  →  ( 𝐼 ‘ 𝑠 )  ⊆  ( 𝐼 ‘ 𝑡 ) )  ∧  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ⊆  ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) ) )  ↔  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) )  =  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) ) ) |