Step |
Hyp |
Ref |
Expression |
1 |
|
r19.26-2 |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) ⊆ ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ∧ ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) ) ↔ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) ⊆ ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) ) ) |
2 |
|
eqss |
⊢ ( ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ↔ ( ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) ⊆ ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ∧ ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) ) ) |
3 |
2
|
2ralbii |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) ⊆ ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ∧ ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) ) ) |
4 |
|
isotone2 |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) ⊆ ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ) |
5 |
4
|
anbi1i |
⊢ ( ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) ) ↔ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) ⊆ ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) ) ) |
6 |
1 3 5
|
3bitr4ri |
⊢ ( ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ) |