Metamath Proof Explorer
		
		
		
		Description:  Closure for a decimal integer (zero units place).  (Contributed by Mario
       Carneiro, 9-Mar-2015)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						numnncl2.1 | 
						⊢ 𝑇  ∈  ℕ  | 
					
					
						 | 
						 | 
						numnncl2.2 | 
						⊢ 𝐴  ∈  ℕ  | 
					
				
					 | 
					Assertion | 
					numnncl2 | 
					⊢  ( ( 𝑇  ·  𝐴 )  +  0 )  ∈  ℕ  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							numnncl2.1 | 
							⊢ 𝑇  ∈  ℕ  | 
						
						
							| 2 | 
							
								
							 | 
							numnncl2.2 | 
							⊢ 𝐴  ∈  ℕ  | 
						
						
							| 3 | 
							
								1 2
							 | 
							nnmulcli | 
							⊢ ( 𝑇  ·  𝐴 )  ∈  ℕ  | 
						
						
							| 4 | 
							
								3
							 | 
							nncni | 
							⊢ ( 𝑇  ·  𝐴 )  ∈  ℂ  | 
						
						
							| 5 | 
							
								4
							 | 
							addridi | 
							⊢ ( ( 𝑇  ·  𝐴 )  +  0 )  =  ( 𝑇  ·  𝐴 )  | 
						
						
							| 6 | 
							
								5 3
							 | 
							eqeltri | 
							⊢ ( ( 𝑇  ·  𝐴 )  +  0 )  ∈  ℕ  |