Step |
Hyp |
Ref |
Expression |
1 |
|
filssufilg |
⊢ ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝒫 𝒫 𝑋 ∈ dom card ) → ∃ 𝑔 ∈ ( UFil ‘ 𝑋 ) 𝑓 ⊆ 𝑔 ) |
2 |
1
|
ancoms |
⊢ ( ( 𝒫 𝒫 𝑋 ∈ dom card ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) → ∃ 𝑔 ∈ ( UFil ‘ 𝑋 ) 𝑓 ⊆ 𝑔 ) |
3 |
2
|
ralrimiva |
⊢ ( 𝒫 𝒫 𝑋 ∈ dom card → ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∃ 𝑔 ∈ ( UFil ‘ 𝑋 ) 𝑓 ⊆ 𝑔 ) |
4 |
|
pwexr |
⊢ ( 𝒫 𝒫 𝑋 ∈ dom card → 𝒫 𝑋 ∈ V ) |
5 |
|
pwexb |
⊢ ( 𝑋 ∈ V ↔ 𝒫 𝑋 ∈ V ) |
6 |
4 5
|
sylibr |
⊢ ( 𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ V ) |
7 |
|
isufl |
⊢ ( 𝑋 ∈ V → ( 𝑋 ∈ UFL ↔ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∃ 𝑔 ∈ ( UFil ‘ 𝑋 ) 𝑓 ⊆ 𝑔 ) ) |
8 |
6 7
|
syl |
⊢ ( 𝒫 𝒫 𝑋 ∈ dom card → ( 𝑋 ∈ UFL ↔ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∃ 𝑔 ∈ ( UFil ‘ 𝑋 ) 𝑓 ⊆ 𝑔 ) ) |
9 |
3 8
|
mpbird |
⊢ ( 𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ UFL ) |