Metamath Proof Explorer


Theorem numufl

Description: Consequence of filssufilg : a set whose double powerset is well-orderable satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion numufl ( 𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ UFL )

Proof

Step Hyp Ref Expression
1 filssufilg ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝒫 𝒫 𝑋 ∈ dom card ) → ∃ 𝑔 ∈ ( UFil ‘ 𝑋 ) 𝑓𝑔 )
2 1 ancoms ( ( 𝒫 𝒫 𝑋 ∈ dom card ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) → ∃ 𝑔 ∈ ( UFil ‘ 𝑋 ) 𝑓𝑔 )
3 2 ralrimiva ( 𝒫 𝒫 𝑋 ∈ dom card → ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∃ 𝑔 ∈ ( UFil ‘ 𝑋 ) 𝑓𝑔 )
4 pwexr ( 𝒫 𝒫 𝑋 ∈ dom card → 𝒫 𝑋 ∈ V )
5 pwexb ( 𝑋 ∈ V ↔ 𝒫 𝑋 ∈ V )
6 4 5 sylibr ( 𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ V )
7 isufl ( 𝑋 ∈ V → ( 𝑋 ∈ UFL ↔ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∃ 𝑔 ∈ ( UFil ‘ 𝑋 ) 𝑓𝑔 ) )
8 6 7 syl ( 𝒫 𝒫 𝑋 ∈ dom card → ( 𝑋 ∈ UFL ↔ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∃ 𝑔 ∈ ( UFil ‘ 𝑋 ) 𝑓𝑔 ) )
9 3 8 mpbird ( 𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ UFL )