| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omf1o.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) |
| 2 |
|
omf1o.2 |
⊢ 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) |
| 3 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) = ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) |
| 4 |
3
|
omxpenlem |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
| 5 |
4
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
| 6 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) = ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) |
| 7 |
6
|
xpcomf1o |
⊢ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 × 𝐵 ) |
| 8 |
|
f1oco |
⊢ ( ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ∧ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 × 𝐵 ) ) → ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
| 9 |
5 7 8
|
sylancl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
| 10 |
6 3
|
xpcomco |
⊢ ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) |
| 11 |
2 10
|
eqtr4i |
⊢ 𝐺 = ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) |
| 12 |
|
f1oeq1 |
⊢ ( 𝐺 = ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) → ( 𝐺 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ↔ ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) ) |
| 13 |
11 12
|
ax-mp |
⊢ ( 𝐺 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ↔ ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
| 14 |
9 13
|
sylibr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐺 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
| 15 |
1
|
omxpenlem |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐹 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 ·o 𝐵 ) ) |
| 16 |
|
f1ocnv |
⊢ ( 𝐹 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 ·o 𝐵 ) → ◡ 𝐹 : ( 𝐴 ·o 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 ) ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ◡ 𝐹 : ( 𝐴 ·o 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 ) ) |
| 18 |
|
f1oco |
⊢ ( ( 𝐺 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ∧ ◡ 𝐹 : ( 𝐴 ·o 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 ) ) → ( 𝐺 ∘ ◡ 𝐹 ) : ( 𝐴 ·o 𝐵 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
| 19 |
14 17 18
|
syl2anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐺 ∘ ◡ 𝐹 ) : ( 𝐴 ·o 𝐵 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |