Description: Ordinal multiplication of the same non-zero number on the left preserves the ordering of the numbers on the right. Lemma 3.15 of Schloeder p. 9. (Contributed by RP, 29-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omord2i | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ On ) | |
| 2 | 1 | anim1ci | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ 𝐶 ∈ On ) → ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ) |
| 3 | on0eln0 | ⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 4 | 3 | biimpar | ⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ 𝐶 ∈ On ) → ∅ ∈ 𝐴 ) |
| 6 | omordi | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) ) | |
| 7 | 2 5 6 | syl2anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) ) |