Metamath Proof Explorer


Theorem omord2i

Description: Ordinal multiplication of the same non-zero number on the left preserves the ordering of the numbers on the right. Lemma 3.15 of Schloeder p. 9. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion omord2i ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ 𝐶 ∈ On ) → ( 𝐵𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ On )
2 1 anim1ci ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ 𝐶 ∈ On ) → ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) )
3 on0eln0 ( 𝐴 ∈ On → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )
4 3 biimpar ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 )
5 4 adantr ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ 𝐶 ∈ On ) → ∅ ∈ 𝐴 )
6 omordi ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐵𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) )
7 2 5 6 syl2anc ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ 𝐶 ∈ On ) → ( 𝐵𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) )