Metamath Proof Explorer


Theorem omord2i

Description: Ordinal multiplication of the same non-zero number on the left preserves the ordering of the numbers on the right. Lemma 3.15 of Schloeder p. 9. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion omord2i
|- ( ( ( A e. On /\ A =/= (/) ) /\ C e. On ) -> ( B e. C -> ( A .o B ) e. ( A .o C ) ) )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( A e. On /\ A =/= (/) ) -> A e. On )
2 1 anim1ci
 |-  ( ( ( A e. On /\ A =/= (/) ) /\ C e. On ) -> ( C e. On /\ A e. On ) )
3 on0eln0
 |-  ( A e. On -> ( (/) e. A <-> A =/= (/) ) )
4 3 biimpar
 |-  ( ( A e. On /\ A =/= (/) ) -> (/) e. A )
5 4 adantr
 |-  ( ( ( A e. On /\ A =/= (/) ) /\ C e. On ) -> (/) e. A )
6 omordi
 |-  ( ( ( C e. On /\ A e. On ) /\ (/) e. A ) -> ( B e. C -> ( A .o B ) e. ( A .o C ) ) )
7 2 5 6 syl2anc
 |-  ( ( ( A e. On /\ A =/= (/) ) /\ C e. On ) -> ( B e. C -> ( A .o B ) e. ( A .o C ) ) )