Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( A e. On /\ A =/= (/) ) -> A e. On ) |
2 |
1
|
anim1ci |
|- ( ( ( A e. On /\ A =/= (/) ) /\ C e. On ) -> ( C e. On /\ A e. On ) ) |
3 |
|
on0eln0 |
|- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
4 |
3
|
biimpar |
|- ( ( A e. On /\ A =/= (/) ) -> (/) e. A ) |
5 |
4
|
adantr |
|- ( ( ( A e. On /\ A =/= (/) ) /\ C e. On ) -> (/) e. A ) |
6 |
|
omordi |
|- ( ( ( C e. On /\ A e. On ) /\ (/) e. A ) -> ( B e. C -> ( A .o B ) e. ( A .o C ) ) ) |
7 |
2 5 6
|
syl2anc |
|- ( ( ( A e. On /\ A =/= (/) ) /\ C e. On ) -> ( B e. C -> ( A .o B ) e. ( A .o C ) ) ) |