Description: An element of an ordinal number equals the intersection with it. (Contributed by NM, 11-Jun-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | on.1 | ⊢ 𝐴 ∈ On | |
| Assertion | onelini | ⊢ ( 𝐵 ∈ 𝐴 → 𝐵 = ( 𝐵 ∩ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on.1 | ⊢ 𝐴 ∈ On | |
| 2 | 1 | onelssi | ⊢ ( 𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴 ) |
| 3 | dfss | ⊢ ( 𝐵 ⊆ 𝐴 ↔ 𝐵 = ( 𝐵 ∩ 𝐴 ) ) | |
| 4 | 2 3 | sylib | ⊢ ( 𝐵 ∈ 𝐴 → 𝐵 = ( 𝐵 ∩ 𝐴 ) ) |