| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 / ( 2 ↑ 𝑦 ) ) = ( 𝑧 / ( 2 ↑ 𝑦 ) ) ) |
| 2 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 + 1 ) = ( 𝑧 + 1 ) ) |
| 3 |
2
|
oveq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) = ( ( 𝑧 + 1 ) / ( 2 ↑ 𝑦 ) ) ) |
| 4 |
1 3
|
opeq12d |
⊢ ( 𝑥 = 𝑧 → 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 = 〈 ( 𝑧 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑧 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) |
| 5 |
|
oveq2 |
⊢ ( 𝑦 = 𝑤 → ( 2 ↑ 𝑦 ) = ( 2 ↑ 𝑤 ) ) |
| 6 |
5
|
oveq2d |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 / ( 2 ↑ 𝑦 ) ) = ( 𝑧 / ( 2 ↑ 𝑤 ) ) ) |
| 7 |
5
|
oveq2d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 + 1 ) / ( 2 ↑ 𝑦 ) ) = ( ( 𝑧 + 1 ) / ( 2 ↑ 𝑤 ) ) ) |
| 8 |
6 7
|
opeq12d |
⊢ ( 𝑦 = 𝑤 → 〈 ( 𝑧 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑧 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 = 〈 ( 𝑧 / ( 2 ↑ 𝑤 ) ) , ( ( 𝑧 + 1 ) / ( 2 ↑ 𝑤 ) ) 〉 ) |
| 9 |
4 8
|
cbvmpov |
⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) = ( 𝑧 ∈ ℤ , 𝑤 ∈ ℕ0 ↦ 〈 ( 𝑧 / ( 2 ↑ 𝑤 ) ) , ( ( 𝑧 + 1 ) / ( 2 ↑ 𝑤 ) ) 〉 ) |
| 10 |
9
|
opnmbllem |
⊢ ( 𝐴 ∈ ( topGen ‘ ran (,) ) → 𝐴 ∈ dom vol ) |