| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniioombl.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 2 |
|
uniioombl.2 |
⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 3 |
|
uniioombl.3 |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
| 4 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
| 5 |
|
inss2 |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) |
| 6 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
| 7 |
5 6
|
sstri |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 8 |
|
fss |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 9 |
1 7 8
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 10 |
|
fco |
⊢ ( ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ∧ 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ ) |
| 11 |
4 9 10
|
sylancr |
⊢ ( 𝜑 → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ ) |
| 12 |
11
|
frnd |
⊢ ( 𝜑 → ran ( (,) ∘ 𝐹 ) ⊆ 𝒫 ℝ ) |
| 13 |
|
sspwuni |
⊢ ( ran ( (,) ∘ 𝐹 ) ⊆ 𝒫 ℝ ↔ ∪ ran ( (,) ∘ 𝐹 ) ⊆ ℝ ) |
| 14 |
12 13
|
sylib |
⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐹 ) ⊆ ℝ ) |
| 15 |
|
elpwi |
⊢ ( 𝑧 ∈ 𝒫 ℝ → 𝑧 ⊆ ℝ ) |
| 16 |
15
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → 𝑧 ⊆ ℝ ) |
| 17 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( vol* ‘ 𝑧 ) ∈ ℝ ) |
| 18 |
|
rphalfcl |
⊢ ( 𝑟 ∈ ℝ+ → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 19 |
18
|
rphalfcld |
⊢ ( 𝑟 ∈ ℝ+ → ( ( 𝑟 / 2 ) / 2 ) ∈ ℝ+ ) |
| 20 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) |
| 21 |
20
|
ovolgelb |
⊢ ( ( 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ∧ ( ( 𝑟 / 2 ) / 2 ) ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) |
| 22 |
16 17 19 21
|
syl2an3an |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) |
| 23 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 24 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 25 |
|
eqid |
⊢ ∪ ran ( (,) ∘ 𝐹 ) = ∪ ran ( (,) ∘ 𝐹 ) |
| 26 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( vol* ‘ 𝑧 ) ∈ ℝ ) |
| 27 |
26
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → ( vol* ‘ 𝑧 ) ∈ ℝ ) |
| 28 |
18
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 29 |
28
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 30 |
29
|
rphalfcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → ( ( 𝑟 / 2 ) / 2 ) ∈ ℝ+ ) |
| 31 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 32 |
31
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 33 |
|
simprrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) |
| 34 |
|
simprrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) |
| 35 |
23 24 3 25 27 30 32 33 20 34
|
uniioombllem6 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + ( 4 · ( ( 𝑟 / 2 ) / 2 ) ) ) ) |
| 36 |
22 35
|
rexlimddv |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + ( 4 · ( ( 𝑟 / 2 ) / 2 ) ) ) ) |
| 37 |
|
rpcn |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℂ ) |
| 38 |
37
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℂ ) |
| 39 |
|
2cnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → 2 ∈ ℂ ) |
| 40 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 41 |
40
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → 2 ≠ 0 ) |
| 42 |
38 39 39 41 41
|
divdiv1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑟 / 2 ) / 2 ) = ( 𝑟 / ( 2 · 2 ) ) ) |
| 43 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
| 44 |
43
|
oveq2i |
⊢ ( 𝑟 / ( 2 · 2 ) ) = ( 𝑟 / 4 ) |
| 45 |
42 44
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑟 / 2 ) / 2 ) = ( 𝑟 / 4 ) ) |
| 46 |
45
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 4 · ( ( 𝑟 / 2 ) / 2 ) ) = ( 4 · ( 𝑟 / 4 ) ) ) |
| 47 |
|
4cn |
⊢ 4 ∈ ℂ |
| 48 |
47
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → 4 ∈ ℂ ) |
| 49 |
|
4ne0 |
⊢ 4 ≠ 0 |
| 50 |
49
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → 4 ≠ 0 ) |
| 51 |
38 48 50
|
divcan2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 4 · ( 𝑟 / 4 ) ) = 𝑟 ) |
| 52 |
46 51
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 4 · ( ( 𝑟 / 2 ) / 2 ) ) = 𝑟 ) |
| 53 |
52
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( vol* ‘ 𝑧 ) + ( 4 · ( ( 𝑟 / 2 ) / 2 ) ) ) = ( ( vol* ‘ 𝑧 ) + 𝑟 ) ) |
| 54 |
36 53
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑟 ) ) |
| 55 |
54
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ∀ 𝑟 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑟 ) ) |
| 56 |
|
inss1 |
⊢ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ⊆ 𝑧 |
| 57 |
56
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ⊆ 𝑧 ) |
| 58 |
|
ovolsscl |
⊢ ( ( ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) ∈ ℝ ) |
| 59 |
57 16 17 58
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) ∈ ℝ ) |
| 60 |
|
difssd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ⊆ 𝑧 ) |
| 61 |
|
ovolsscl |
⊢ ( ( ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ∈ ℝ ) |
| 62 |
60 16 17 61
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ∈ ℝ ) |
| 63 |
59 62
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ∈ ℝ ) |
| 64 |
|
alrple |
⊢ ( ( ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ∈ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( vol* ‘ 𝑧 ) ↔ ∀ 𝑟 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑟 ) ) ) |
| 65 |
63 17 64
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( vol* ‘ 𝑧 ) ↔ ∀ 𝑟 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑟 ) ) ) |
| 66 |
55 65
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( vol* ‘ 𝑧 ) ) |
| 67 |
66
|
expr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 ℝ ) → ( ( vol* ‘ 𝑧 ) ∈ ℝ → ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( vol* ‘ 𝑧 ) ) ) |
| 68 |
67
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑧 ) ∈ ℝ → ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( vol* ‘ 𝑧 ) ) ) |
| 69 |
|
ismbl2 |
⊢ ( ∪ ran ( (,) ∘ 𝐹 ) ∈ dom vol ↔ ( ∪ ran ( (,) ∘ 𝐹 ) ⊆ ℝ ∧ ∀ 𝑧 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑧 ) ∈ ℝ → ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( vol* ‘ 𝑧 ) ) ) ) |
| 70 |
14 68 69
|
sylanbrc |
⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐹 ) ∈ dom vol ) |