| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniioombl.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 2 |
|
uniioombl.2 |
⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 3 |
|
uniioombl.3 |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
| 4 |
|
uniioombl.a |
⊢ 𝐴 = ∪ ran ( (,) ∘ 𝐹 ) |
| 5 |
|
uniioombl.e |
⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) |
| 6 |
|
uniioombl.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 7 |
|
uniioombl.g |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 8 |
|
uniioombl.s |
⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) |
| 9 |
|
uniioombl.t |
⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) |
| 10 |
|
uniioombl.v |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) |
| 11 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 12 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 13 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑇 ‘ 𝑚 ) = ( 𝑇 ‘ 𝑚 ) ) |
| 14 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) = ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) ) |
| 15 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐺 ) = ( ( abs ∘ − ) ∘ 𝐺 ) |
| 16 |
15
|
ovolfsf |
⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ 𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 17 |
7 16
|
syl |
⊢ ( 𝜑 → ( ( abs ∘ − ) ∘ 𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 18 |
17
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) ∈ ( 0 [,) +∞ ) ) |
| 19 |
|
elrege0 |
⊢ ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) ) ) |
| 20 |
18 19
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → ( ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) ) ) |
| 21 |
20
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) ∈ ℝ ) |
| 22 |
20
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑎 ) ) |
| 23 |
1 2 3 4 5 6 7 8 9 10
|
uniioombllem1 |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
| 24 |
15 9
|
ovolsf |
⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 25 |
7 24
|
syl |
⊢ ( 𝜑 → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 26 |
25
|
frnd |
⊢ ( 𝜑 → ran 𝑇 ⊆ ( 0 [,) +∞ ) ) |
| 27 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
| 28 |
26 27
|
sstrdi |
⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ* ) |
| 29 |
|
supxrub |
⊢ ( ( ran 𝑇 ⊆ ℝ* ∧ 𝑥 ∈ ran 𝑇 ) → 𝑥 ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 30 |
28 29
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝑇 ) → 𝑥 ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 31 |
30
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ran 𝑇 𝑥 ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 32 |
25
|
ffnd |
⊢ ( 𝜑 → 𝑇 Fn ℕ ) |
| 33 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑇 ‘ 𝑚 ) → ( 𝑥 ≤ sup ( ran 𝑇 , ℝ* , < ) ↔ ( 𝑇 ‘ 𝑚 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) ) |
| 34 |
33
|
ralrn |
⊢ ( 𝑇 Fn ℕ → ( ∀ 𝑥 ∈ ran 𝑇 𝑥 ≤ sup ( ran 𝑇 , ℝ* , < ) ↔ ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) ) |
| 35 |
32 34
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ran 𝑇 𝑥 ≤ sup ( ran 𝑇 , ℝ* , < ) ↔ ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) ) |
| 36 |
31 35
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 37 |
|
brralrspcev |
⊢ ( ( sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ∧ ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ≤ 𝑥 ) |
| 38 |
23 36 37
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ≤ 𝑥 ) |
| 39 |
11 9 12 14 21 22 38
|
isumsup2 |
⊢ ( 𝜑 → 𝑇 ⇝ sup ( ran 𝑇 , ℝ , < ) ) |
| 40 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 41 |
26 40
|
sstrdi |
⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ ) |
| 42 |
|
1nn |
⊢ 1 ∈ ℕ |
| 43 |
25
|
fdmd |
⊢ ( 𝜑 → dom 𝑇 = ℕ ) |
| 44 |
42 43
|
eleqtrrid |
⊢ ( 𝜑 → 1 ∈ dom 𝑇 ) |
| 45 |
44
|
ne0d |
⊢ ( 𝜑 → dom 𝑇 ≠ ∅ ) |
| 46 |
|
dm0rn0 |
⊢ ( dom 𝑇 = ∅ ↔ ran 𝑇 = ∅ ) |
| 47 |
46
|
necon3bii |
⊢ ( dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅ ) |
| 48 |
45 47
|
sylib |
⊢ ( 𝜑 → ran 𝑇 ≠ ∅ ) |
| 49 |
|
brralrspcev |
⊢ ( ( sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ∧ ∀ 𝑥 ∈ ran 𝑇 𝑥 ≤ sup ( ran 𝑇 , ℝ* , < ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ ran 𝑇 𝑥 ≤ 𝑦 ) |
| 50 |
23 31 49
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ ran 𝑇 𝑥 ≤ 𝑦 ) |
| 51 |
|
supxrre |
⊢ ( ( ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ ran 𝑇 𝑥 ≤ 𝑦 ) → sup ( ran 𝑇 , ℝ* , < ) = sup ( ran 𝑇 , ℝ , < ) ) |
| 52 |
41 48 50 51
|
syl3anc |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) = sup ( ran 𝑇 , ℝ , < ) ) |
| 53 |
39 52
|
breqtrrd |
⊢ ( 𝜑 → 𝑇 ⇝ sup ( ran 𝑇 , ℝ* , < ) ) |
| 54 |
11 12 6 13 53
|
climi2 |
⊢ ( 𝜑 → ∃ 𝑗 ∈ ℕ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) |
| 55 |
11
|
r19.2uz |
⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 → ∃ 𝑚 ∈ ℕ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) |
| 56 |
54 55
|
syl |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℕ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) |
| 57 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → 1 ∈ ℤ ) |
| 58 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → 𝐶 ∈ ℝ+ ) |
| 59 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → 𝑚 ∈ ℕ ) |
| 60 |
59
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → 𝑚 ∈ ℝ+ ) |
| 61 |
58 60
|
rpdivcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( 𝐶 / 𝑚 ) ∈ ℝ+ ) |
| 62 |
|
fvex |
⊢ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ V |
| 63 |
62
|
inex1 |
⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ V |
| 64 |
63
|
rgenw |
⊢ ∀ 𝑧 ∈ ℕ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ V |
| 65 |
|
eqid |
⊢ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 66 |
65
|
fnmpt |
⊢ ( ∀ 𝑧 ∈ ℕ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ V → ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) Fn ℕ ) |
| 67 |
64 66
|
mp1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) Fn ℕ ) |
| 68 |
|
elfznn |
⊢ ( 𝑖 ∈ ( 1 ... 𝑛 ) → 𝑖 ∈ ℕ ) |
| 69 |
|
fvco2 |
⊢ ( ( ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) Fn ℕ ∧ 𝑖 ∈ ℕ ) → ( ( vol* ∘ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ‘ 𝑖 ) = ( vol* ‘ ( ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ‘ 𝑖 ) ) ) |
| 70 |
67 68 69
|
syl2an |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → ( ( vol* ∘ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ‘ 𝑖 ) = ( vol* ‘ ( ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ‘ 𝑖 ) ) ) |
| 71 |
68
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → 𝑖 ∈ ℕ ) |
| 72 |
|
2fveq3 |
⊢ ( 𝑧 = 𝑖 → ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) = ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 73 |
72
|
ineq1d |
⊢ ( 𝑧 = 𝑖 → ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 74 |
|
fvex |
⊢ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ V |
| 75 |
74
|
inex1 |
⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ V |
| 76 |
73 65 75
|
fvmpt |
⊢ ( 𝑖 ∈ ℕ → ( ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ‘ 𝑖 ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 77 |
71 76
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ‘ 𝑖 ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 78 |
77
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → ( vol* ‘ ( ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ‘ 𝑖 ) ) = ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 79 |
70 78
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → ( ( vol* ∘ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ‘ 𝑖 ) = ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 80 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
| 81 |
80 11
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 82 |
|
inss2 |
⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) |
| 83 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 84 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... 𝑚 ) → 𝑗 ∈ ℕ ) |
| 85 |
|
ffvelcdm |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 86 |
83 84 85
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 87 |
86
|
elin2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) ) |
| 88 |
|
1st2nd2 |
⊢ ( ( 𝐺 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) → ( 𝐺 ‘ 𝑗 ) = 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) |
| 89 |
87 88
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( 𝐺 ‘ 𝑗 ) = 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) |
| 90 |
89
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) ) |
| 91 |
|
df-ov |
⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) |
| 92 |
90 91
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) = ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 93 |
|
ioossre |
⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ℝ |
| 94 |
92 93
|
eqsstrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) |
| 95 |
94
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) |
| 96 |
92
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 97 |
|
ovolfcl |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 98 |
83 84 97
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 99 |
|
ovolioo |
⊢ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) → ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 100 |
98 99
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 101 |
96 100
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 102 |
98
|
simp2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 103 |
98
|
simp1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 104 |
102 103
|
resubcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 105 |
101 104
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 106 |
105
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 107 |
|
ovolsscl |
⊢ ( ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∧ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ∧ ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 108 |
82 95 106 107
|
mp3an2i |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 109 |
108
|
recnd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℂ ) |
| 110 |
79 81 109
|
fsumser |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( seq 1 ( + , ( vol* ∘ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) ‘ 𝑛 ) ) |
| 111 |
110
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( vol* ∘ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) ‘ 𝑛 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 112 |
|
2fveq3 |
⊢ ( 𝑧 = 𝑘 → ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) = ( (,) ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 113 |
112
|
ineq1d |
⊢ ( 𝑧 = 𝑘 → ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑘 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 114 |
113
|
cbvmptv |
⊢ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑘 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 115 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 = ∅ ↔ 𝑥 = ∅ ) ) |
| 116 |
|
infeq1 |
⊢ ( 𝑧 = 𝑥 → inf ( 𝑧 , ℝ* , < ) = inf ( 𝑥 , ℝ* , < ) ) |
| 117 |
|
supeq1 |
⊢ ( 𝑧 = 𝑥 → sup ( 𝑧 , ℝ* , < ) = sup ( 𝑥 , ℝ* , < ) ) |
| 118 |
116 117
|
opeq12d |
⊢ ( 𝑧 = 𝑥 → 〈 inf ( 𝑧 , ℝ* , < ) , sup ( 𝑧 , ℝ* , < ) 〉 = 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) |
| 119 |
115 118
|
ifbieq2d |
⊢ ( 𝑧 = 𝑥 → if ( 𝑧 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑧 , ℝ* , < ) , sup ( 𝑧 , ℝ* , < ) 〉 ) = if ( 𝑥 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) ) |
| 120 |
119
|
cbvmptv |
⊢ ( 𝑧 ∈ ran (,) ↦ if ( 𝑧 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑧 , ℝ* , < ) , sup ( 𝑧 , ℝ* , < ) 〉 ) ) = ( 𝑥 ∈ ran (,) ↦ if ( 𝑥 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) ) |
| 121 |
1 2 3 4 5 6 7 8 9 10 114 120
|
uniioombllem2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → seq 1 ( + , ( vol* ∘ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) ⇝ ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) |
| 122 |
84 121
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → seq 1 ( + , ( vol* ∘ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) ⇝ ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) |
| 123 |
122
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → seq 1 ( + , ( vol* ∘ ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) ⇝ ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) |
| 124 |
11 57 61 111 123
|
climi2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ∃ 𝑎 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 125 |
|
1z |
⊢ 1 ∈ ℤ |
| 126 |
11
|
rexuz3 |
⊢ ( 1 ∈ ℤ → ( ∃ 𝑎 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ↔ ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) |
| 127 |
125 126
|
ax-mp |
⊢ ( ∃ 𝑎 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ↔ ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 128 |
124 127
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑚 ) ) → ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 129 |
128
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) → ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 130 |
|
fzfi |
⊢ ( 1 ... 𝑚 ) ∈ Fin |
| 131 |
|
rexfiuz |
⊢ ( ( 1 ... 𝑚 ) ∈ Fin → ( ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ↔ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) |
| 132 |
130 131
|
ax-mp |
⊢ ( ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ↔ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 133 |
129 132
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) → ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 134 |
11
|
rexuz3 |
⊢ ( 1 ∈ ℤ → ( ∃ 𝑎 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ↔ ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) |
| 135 |
125 134
|
ax-mp |
⊢ ( ∃ 𝑎 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ↔ ∃ 𝑎 ∈ ℤ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 136 |
133 135
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) → ∃ 𝑎 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 137 |
11
|
r19.2uz |
⊢ ( ∃ 𝑎 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑎 ) ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 138 |
136 137
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) → ∃ 𝑛 ∈ ℕ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 139 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 140 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 141 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → ( vol* ‘ 𝐸 ) ∈ ℝ ) |
| 142 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → 𝐶 ∈ ℝ+ ) |
| 143 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 144 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) |
| 145 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) |
| 146 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → 𝑚 ∈ ℕ ) |
| 147 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) |
| 148 |
|
eqid |
⊢ ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑚 ) ) = ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑚 ) ) |
| 149 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → 𝑛 ∈ ℕ ) |
| 150 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 151 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑧 → ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) = ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 152 |
151
|
ineq1d |
⊢ ( 𝑖 = 𝑧 → ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 153 |
152
|
fveq2d |
⊢ ( 𝑖 = 𝑧 → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 154 |
153
|
cbvsumv |
⊢ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = Σ 𝑧 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 155 |
|
2fveq3 |
⊢ ( 𝑗 = 𝑘 → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) = ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 156 |
155
|
ineq2d |
⊢ ( 𝑗 = 𝑘 → ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 157 |
156
|
fveq2d |
⊢ ( 𝑗 = 𝑘 → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
| 158 |
157
|
sumeq2sdv |
⊢ ( 𝑗 = 𝑘 → Σ 𝑧 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = Σ 𝑧 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
| 159 |
154 158
|
eqtrid |
⊢ ( 𝑗 = 𝑘 → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = Σ 𝑧 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
| 160 |
155
|
ineq1d |
⊢ ( 𝑗 = 𝑘 → ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ∩ 𝐴 ) ) |
| 161 |
160
|
fveq2d |
⊢ ( 𝑗 = 𝑘 → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) = ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ∩ 𝐴 ) ) ) |
| 162 |
159 161
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) = ( Σ 𝑧 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ∩ 𝐴 ) ) ) ) |
| 163 |
162
|
fveq2d |
⊢ ( 𝑗 = 𝑘 → ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) = ( abs ‘ ( Σ 𝑧 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ∩ 𝐴 ) ) ) ) ) |
| 164 |
163
|
breq1d |
⊢ ( 𝑗 = 𝑘 → ( ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ↔ ( abs ‘ ( Σ 𝑧 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) |
| 165 |
164
|
cbvralvw |
⊢ ( ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ↔ ∀ 𝑘 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑧 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 166 |
150 165
|
sylib |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → ∀ 𝑘 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑧 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑘 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) |
| 167 |
|
eqid |
⊢ ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑛 ) ) = ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑛 ) ) |
| 168 |
139 140 3 4 141 142 143 144 9 145 146 147 148 149 166 167
|
uniioombllem5 |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) ) → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) ) |
| 169 |
168
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ∀ 𝑗 ∈ ( 1 ... 𝑚 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑚 ) ) ) → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) ) |
| 170 |
138 169
|
rexlimddv |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( abs ‘ ( ( 𝑇 ‘ 𝑚 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) ) → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) ) |
| 171 |
56 170
|
rexlimddv |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) ) |