Step |
Hyp |
Ref |
Expression |
1 |
|
uniioombl.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
2 |
|
uniioombl.2 |
⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
3 |
|
uniioombl.3 |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
4 |
|
uniioombl.a |
⊢ 𝐴 = ∪ ran ( (,) ∘ 𝐹 ) |
5 |
|
uniioombl.e |
⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) |
6 |
|
uniioombl.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
7 |
|
uniioombl.g |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
8 |
|
uniioombl.s |
⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) |
9 |
|
uniioombl.t |
⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) |
10 |
|
uniioombl.v |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) |
11 |
|
uniioombl.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
12 |
|
uniioombl.m2 |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑇 ‘ 𝑀 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) |
13 |
|
uniioombl.k |
⊢ 𝐾 = ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) |
14 |
|
uniioombl.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
15 |
|
uniioombl.n2 |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑀 ) ) |
16 |
|
uniioombl.l |
⊢ 𝐿 = ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) |
17 |
|
inss1 |
⊢ ( 𝐸 ∩ 𝐴 ) ⊆ 𝐸 |
18 |
7
|
uniiccdif |
⊢ ( 𝜑 → ( ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ∧ ( vol* ‘ ( ∪ ran ( [,] ∘ 𝐺 ) ∖ ∪ ran ( (,) ∘ 𝐺 ) ) ) = 0 ) ) |
19 |
18
|
simpld |
⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ) |
20 |
|
ovolficcss |
⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∪ ran ( [,] ∘ 𝐺 ) ⊆ ℝ ) |
21 |
7 20
|
syl |
⊢ ( 𝜑 → ∪ ran ( [,] ∘ 𝐺 ) ⊆ ℝ ) |
22 |
19 21
|
sstrd |
⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ) |
23 |
8 22
|
sstrd |
⊢ ( 𝜑 → 𝐸 ⊆ ℝ ) |
24 |
|
ovolsscl |
⊢ ( ( ( 𝐸 ∩ 𝐴 ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ℝ ) |
25 |
17 23 5 24
|
mp3an2i |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ℝ ) |
26 |
|
difssd |
⊢ ( 𝜑 → ( 𝐸 ∖ 𝐴 ) ⊆ 𝐸 ) |
27 |
|
ovolsscl |
⊢ ( ( ( 𝐸 ∖ 𝐴 ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ∈ ℝ ) |
28 |
26 23 5 27
|
syl3anc |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ∈ ℝ ) |
29 |
25 28
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) ∈ ℝ ) |
30 |
|
inss1 |
⊢ ( 𝐾 ∩ 𝐴 ) ⊆ 𝐾 |
31 |
|
imassrn |
⊢ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ⊆ ran ( (,) ∘ 𝐺 ) |
32 |
31
|
unissi |
⊢ ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) |
33 |
13 32
|
eqsstri |
⊢ 𝐾 ⊆ ∪ ran ( (,) ∘ 𝐺 ) |
34 |
33 22
|
sstrid |
⊢ ( 𝜑 → 𝐾 ⊆ ℝ ) |
35 |
1 2 3 4 5 6 7 8 9 10
|
uniioombllem1 |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
36 |
|
ssid |
⊢ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) |
37 |
9
|
ovollb |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
38 |
7 36 37
|
sylancl |
⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
39 |
|
ovollecl |
⊢ ( ( ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) |
40 |
22 35 38 39
|
syl3anc |
⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) |
41 |
|
ovolsscl |
⊢ ( ( 𝐾 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ∧ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) → ( vol* ‘ 𝐾 ) ∈ ℝ ) |
42 |
33 22 40 41
|
mp3an2i |
⊢ ( 𝜑 → ( vol* ‘ 𝐾 ) ∈ ℝ ) |
43 |
|
ovolsscl |
⊢ ( ( ( 𝐾 ∩ 𝐴 ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ∈ ℝ ) |
44 |
30 34 42 43
|
mp3an2i |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ∈ ℝ ) |
45 |
|
difssd |
⊢ ( 𝜑 → ( 𝐾 ∖ 𝐴 ) ⊆ 𝐾 ) |
46 |
|
ovolsscl |
⊢ ( ( ( 𝐾 ∖ 𝐴 ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ∈ ℝ ) |
47 |
45 34 42 46
|
syl3anc |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ∈ ℝ ) |
48 |
44 47
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) ∈ ℝ ) |
49 |
6
|
rpred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
50 |
49 49
|
readdcld |
⊢ ( 𝜑 → ( 𝐶 + 𝐶 ) ∈ ℝ ) |
51 |
48 50
|
readdcld |
⊢ ( 𝜑 → ( ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) + ( 𝐶 + 𝐶 ) ) ∈ ℝ ) |
52 |
|
4re |
⊢ 4 ∈ ℝ |
53 |
|
remulcl |
⊢ ( ( 4 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 4 · 𝐶 ) ∈ ℝ ) |
54 |
52 49 53
|
sylancr |
⊢ ( 𝜑 → ( 4 · 𝐶 ) ∈ ℝ ) |
55 |
5 54
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) ∈ ℝ ) |
56 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
uniioombllem3 |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) < ( ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) + ( 𝐶 + 𝐶 ) ) ) |
57 |
29 51 56
|
ltled |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) ≤ ( ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) + ( 𝐶 + 𝐶 ) ) ) |
58 |
5 50
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐸 ) + ( 𝐶 + 𝐶 ) ) ∈ ℝ ) |
59 |
42 49
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐾 ) + 𝐶 ) ∈ ℝ ) |
60 |
|
inss1 |
⊢ ( 𝐾 ∩ 𝐿 ) ⊆ 𝐾 |
61 |
|
ovolsscl |
⊢ ( ( ( 𝐾 ∩ 𝐿 ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) ∈ ℝ ) |
62 |
60 34 42 61
|
mp3an2i |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) ∈ ℝ ) |
63 |
62 49
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + 𝐶 ) ∈ ℝ ) |
64 |
|
difssd |
⊢ ( 𝜑 → ( 𝐾 ∖ 𝐿 ) ⊆ 𝐾 ) |
65 |
|
ovolsscl |
⊢ ( ( ( 𝐾 ∖ 𝐿 ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ∈ ℝ ) |
66 |
64 34 42 65
|
syl3anc |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ∈ ℝ ) |
67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
uniioombllem4 |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ≤ ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + 𝐶 ) ) |
68 |
|
imassrn |
⊢ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) ⊆ ran ( (,) ∘ 𝐹 ) |
69 |
68
|
unissi |
⊢ ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) ⊆ ∪ ran ( (,) ∘ 𝐹 ) |
70 |
69 16 4
|
3sstr4i |
⊢ 𝐿 ⊆ 𝐴 |
71 |
|
sscon |
⊢ ( 𝐿 ⊆ 𝐴 → ( 𝐾 ∖ 𝐴 ) ⊆ ( 𝐾 ∖ 𝐿 ) ) |
72 |
70 71
|
mp1i |
⊢ ( 𝜑 → ( 𝐾 ∖ 𝐴 ) ⊆ ( 𝐾 ∖ 𝐿 ) ) |
73 |
64 34
|
sstrd |
⊢ ( 𝜑 → ( 𝐾 ∖ 𝐿 ) ⊆ ℝ ) |
74 |
|
ovolss |
⊢ ( ( ( 𝐾 ∖ 𝐴 ) ⊆ ( 𝐾 ∖ 𝐿 ) ∧ ( 𝐾 ∖ 𝐿 ) ⊆ ℝ ) → ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ≤ ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ) |
75 |
72 73 74
|
syl2anc |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ≤ ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ) |
76 |
44 47 63 66 67 75
|
le2addd |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) ≤ ( ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + 𝐶 ) + ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ) ) |
77 |
62
|
recnd |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) ∈ ℂ ) |
78 |
49
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
79 |
66
|
recnd |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ∈ ℂ ) |
80 |
77 78 79
|
add32d |
⊢ ( 𝜑 → ( ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + 𝐶 ) + ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ) = ( ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ) + 𝐶 ) ) |
81 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
82 |
|
inss2 |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) |
83 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
84 |
82 83
|
sstri |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
85 |
|
fss |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
86 |
1 84 85
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
87 |
|
fco |
⊢ ( ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ∧ 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ ) |
88 |
81 86 87
|
sylancr |
⊢ ( 𝜑 → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ ) |
89 |
|
ffun |
⊢ ( ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ → Fun ( (,) ∘ 𝐹 ) ) |
90 |
|
funiunfv |
⊢ ( Fun ( (,) ∘ 𝐹 ) → ∪ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) = ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) ) |
91 |
88 89 90
|
3syl |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) = ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) ) |
92 |
91 16
|
eqtr4di |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) = 𝐿 ) |
93 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
94 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℕ ) |
95 |
|
fvco3 |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑛 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) = ( (,) ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
96 |
1 94 95
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) = ( (,) ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
97 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
98 |
1 94 97
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
99 |
98
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ℝ × ℝ ) ) |
100 |
|
1st2nd2 |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ 𝑛 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) 〉 ) |
101 |
99 100
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑛 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) 〉 ) |
102 |
101
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( (,) ‘ ( 𝐹 ‘ 𝑛 ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) 〉 ) ) |
103 |
|
df-ov |
⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) 〉 ) |
104 |
102 103
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( (,) ‘ ( 𝐹 ‘ 𝑛 ) ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
105 |
96 104
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
106 |
|
ioombl |
⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ∈ dom vol |
107 |
105 106
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) ∈ dom vol ) |
108 |
107
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) ∈ dom vol ) |
109 |
|
finiunmbl |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) ∈ dom vol ) → ∪ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) ∈ dom vol ) |
110 |
93 108 109
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) ∈ dom vol ) |
111 |
92 110
|
eqeltrrd |
⊢ ( 𝜑 → 𝐿 ∈ dom vol ) |
112 |
|
mblsplit |
⊢ ( ( 𝐿 ∈ dom vol ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ 𝐾 ) = ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ) ) |
113 |
111 34 42 112
|
syl3anc |
⊢ ( 𝜑 → ( vol* ‘ 𝐾 ) = ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ) ) |
114 |
113
|
oveq1d |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐾 ) + 𝐶 ) = ( ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ) + 𝐶 ) ) |
115 |
80 114
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + 𝐶 ) + ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ) = ( ( vol* ‘ 𝐾 ) + 𝐶 ) ) |
116 |
76 115
|
breqtrd |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝐾 ) + 𝐶 ) ) |
117 |
5 49
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐸 ) + 𝐶 ) ∈ ℝ ) |
118 |
9
|
ovollb |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐾 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) → ( vol* ‘ 𝐾 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
119 |
7 33 118
|
sylancl |
⊢ ( 𝜑 → ( vol* ‘ 𝐾 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
120 |
42 35 117 119 10
|
letrd |
⊢ ( 𝜑 → ( vol* ‘ 𝐾 ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) |
121 |
42 117 49 120
|
leadd1dd |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐾 ) + 𝐶 ) ≤ ( ( ( vol* ‘ 𝐸 ) + 𝐶 ) + 𝐶 ) ) |
122 |
5
|
recnd |
⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℂ ) |
123 |
122 78 78
|
addassd |
⊢ ( 𝜑 → ( ( ( vol* ‘ 𝐸 ) + 𝐶 ) + 𝐶 ) = ( ( vol* ‘ 𝐸 ) + ( 𝐶 + 𝐶 ) ) ) |
124 |
121 123
|
breqtrd |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐾 ) + 𝐶 ) ≤ ( ( vol* ‘ 𝐸 ) + ( 𝐶 + 𝐶 ) ) ) |
125 |
48 59 58 116 124
|
letrd |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝐸 ) + ( 𝐶 + 𝐶 ) ) ) |
126 |
48 58 50 125
|
leadd1dd |
⊢ ( 𝜑 → ( ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) + ( 𝐶 + 𝐶 ) ) ≤ ( ( ( vol* ‘ 𝐸 ) + ( 𝐶 + 𝐶 ) ) + ( 𝐶 + 𝐶 ) ) ) |
127 |
50
|
recnd |
⊢ ( 𝜑 → ( 𝐶 + 𝐶 ) ∈ ℂ ) |
128 |
122 127 127
|
addassd |
⊢ ( 𝜑 → ( ( ( vol* ‘ 𝐸 ) + ( 𝐶 + 𝐶 ) ) + ( 𝐶 + 𝐶 ) ) = ( ( vol* ‘ 𝐸 ) + ( ( 𝐶 + 𝐶 ) + ( 𝐶 + 𝐶 ) ) ) ) |
129 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
130 |
129
|
oveq1i |
⊢ ( ( 2 · 2 ) · 𝐶 ) = ( 4 · 𝐶 ) |
131 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
132 |
131 131 78
|
mulassd |
⊢ ( 𝜑 → ( ( 2 · 2 ) · 𝐶 ) = ( 2 · ( 2 · 𝐶 ) ) ) |
133 |
78
|
2timesd |
⊢ ( 𝜑 → ( 2 · 𝐶 ) = ( 𝐶 + 𝐶 ) ) |
134 |
133
|
oveq2d |
⊢ ( 𝜑 → ( 2 · ( 2 · 𝐶 ) ) = ( 2 · ( 𝐶 + 𝐶 ) ) ) |
135 |
127
|
2timesd |
⊢ ( 𝜑 → ( 2 · ( 𝐶 + 𝐶 ) ) = ( ( 𝐶 + 𝐶 ) + ( 𝐶 + 𝐶 ) ) ) |
136 |
132 134 135
|
3eqtrd |
⊢ ( 𝜑 → ( ( 2 · 2 ) · 𝐶 ) = ( ( 𝐶 + 𝐶 ) + ( 𝐶 + 𝐶 ) ) ) |
137 |
130 136
|
eqtr3id |
⊢ ( 𝜑 → ( 4 · 𝐶 ) = ( ( 𝐶 + 𝐶 ) + ( 𝐶 + 𝐶 ) ) ) |
138 |
137
|
oveq2d |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) = ( ( vol* ‘ 𝐸 ) + ( ( 𝐶 + 𝐶 ) + ( 𝐶 + 𝐶 ) ) ) ) |
139 |
128 138
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( vol* ‘ 𝐸 ) + ( 𝐶 + 𝐶 ) ) + ( 𝐶 + 𝐶 ) ) = ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) ) |
140 |
126 139
|
breqtrd |
⊢ ( 𝜑 → ( ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) + ( 𝐶 + 𝐶 ) ) ≤ ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) ) |
141 |
29 51 55 57 140
|
letrd |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) ) |