| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniioombl.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 2 |
|
uniioombl.2 |
⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 3 |
|
uniioombl.3 |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
| 4 |
|
uniioombl.a |
⊢ 𝐴 = ∪ ran ( (,) ∘ 𝐹 ) |
| 5 |
|
uniioombl.e |
⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) |
| 6 |
|
uniioombl.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 7 |
|
uniioombl.g |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 8 |
|
uniioombl.s |
⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) |
| 9 |
|
uniioombl.t |
⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) |
| 10 |
|
uniioombl.v |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) |
| 11 |
|
uniioombl.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 12 |
|
uniioombl.m2 |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑇 ‘ 𝑀 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) |
| 13 |
|
uniioombl.k |
⊢ 𝐾 = ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) |
| 14 |
|
uniioombl.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 15 |
|
uniioombl.n2 |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑀 ) ) |
| 16 |
|
uniioombl.l |
⊢ 𝐿 = ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) |
| 17 |
|
inss1 |
⊢ ( 𝐾 ∩ 𝐴 ) ⊆ 𝐾 |
| 18 |
|
imassrn |
⊢ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ⊆ ran ( (,) ∘ 𝐺 ) |
| 19 |
18
|
unissi |
⊢ ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) |
| 20 |
13 19
|
eqsstri |
⊢ 𝐾 ⊆ ∪ ran ( (,) ∘ 𝐺 ) |
| 21 |
7
|
uniiccdif |
⊢ ( 𝜑 → ( ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ∧ ( vol* ‘ ( ∪ ran ( [,] ∘ 𝐺 ) ∖ ∪ ran ( (,) ∘ 𝐺 ) ) ) = 0 ) ) |
| 22 |
21
|
simpld |
⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ) |
| 23 |
|
ovolficcss |
⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∪ ran ( [,] ∘ 𝐺 ) ⊆ ℝ ) |
| 24 |
7 23
|
syl |
⊢ ( 𝜑 → ∪ ran ( [,] ∘ 𝐺 ) ⊆ ℝ ) |
| 25 |
22 24
|
sstrd |
⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ) |
| 26 |
20 25
|
sstrid |
⊢ ( 𝜑 → 𝐾 ⊆ ℝ ) |
| 27 |
1 2 3 4 5 6 7 8 9 10
|
uniioombllem1 |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
| 28 |
|
ssid |
⊢ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) |
| 29 |
9
|
ovollb |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 30 |
7 28 29
|
sylancl |
⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 31 |
|
ovollecl |
⊢ ( ( ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) |
| 32 |
25 27 30 31
|
syl3anc |
⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) |
| 33 |
|
ovolsscl |
⊢ ( ( 𝐾 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ∧ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) → ( vol* ‘ 𝐾 ) ∈ ℝ ) |
| 34 |
20 25 32 33
|
mp3an2i |
⊢ ( 𝜑 → ( vol* ‘ 𝐾 ) ∈ ℝ ) |
| 35 |
|
ovolsscl |
⊢ ( ( ( 𝐾 ∩ 𝐴 ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ∈ ℝ ) |
| 36 |
17 26 34 35
|
mp3an2i |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ∈ ℝ ) |
| 37 |
|
inss1 |
⊢ ( 𝐾 ∩ 𝐿 ) ⊆ 𝐾 |
| 38 |
|
ovolsscl |
⊢ ( ( ( 𝐾 ∩ 𝐿 ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) ∈ ℝ ) |
| 39 |
37 26 34 38
|
mp3an2i |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) ∈ ℝ ) |
| 40 |
|
ssun2 |
⊢ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ( ( 𝐾 ∩ 𝐿 ) ∪ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 41 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 42 |
14
|
peano2nnd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 43 |
42 41
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 44 |
|
uzsplit |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( ℤ≥ ‘ 1 ) = ( ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 45 |
43 44
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 1 ) = ( ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 46 |
41 45
|
eqtrid |
⊢ ( 𝜑 → ℕ = ( ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 47 |
14
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 48 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 49 |
|
pncan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 50 |
47 48 49
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 51 |
50
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 1 ... 𝑁 ) ) |
| 52 |
51
|
uneq1d |
⊢ ( 𝜑 → ( ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ( ( 1 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 53 |
46 52
|
eqtrd |
⊢ ( 𝜑 → ℕ = ( ( 1 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 54 |
53
|
iuneq1d |
⊢ ( 𝜑 → ∪ 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) = ∪ 𝑖 ∈ ( ( 1 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 55 |
|
iunxun |
⊢ ∪ 𝑖 ∈ ( ( 1 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) = ( ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 56 |
54 55
|
eqtrdi |
⊢ ( 𝜑 → ∪ 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) = ( ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 57 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
| 58 |
|
inss2 |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) |
| 59 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
| 60 |
58 59
|
sstri |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 61 |
|
fss |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 62 |
1 60 61
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 63 |
|
fco |
⊢ ( ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ∧ 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ ) |
| 64 |
57 62 63
|
sylancr |
⊢ ( 𝜑 → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ ) |
| 65 |
|
ffn |
⊢ ( ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ → ( (,) ∘ 𝐹 ) Fn ℕ ) |
| 66 |
|
fniunfv |
⊢ ( ( (,) ∘ 𝐹 ) Fn ℕ → ∪ 𝑖 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑖 ) = ∪ ran ( (,) ∘ 𝐹 ) ) |
| 67 |
64 65 66
|
3syl |
⊢ ( 𝜑 → ∪ 𝑖 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑖 ) = ∪ ran ( (,) ∘ 𝐹 ) ) |
| 68 |
|
fvco3 |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑖 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑖 ) = ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 69 |
1 68
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑖 ) = ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 70 |
69
|
iuneq2dv |
⊢ ( 𝜑 → ∪ 𝑖 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑖 ) = ∪ 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 71 |
67 70
|
eqtr3d |
⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐹 ) = ∪ 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 72 |
4 71
|
eqtrid |
⊢ ( 𝜑 → 𝐴 = ∪ 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 73 |
|
ffun |
⊢ ( ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ → Fun ( (,) ∘ 𝐹 ) ) |
| 74 |
|
funiunfv |
⊢ ( Fun ( (,) ∘ 𝐹 ) → ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑖 ) = ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) ) |
| 75 |
64 73 74
|
3syl |
⊢ ( 𝜑 → ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑖 ) = ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) ) |
| 76 |
|
elfznn |
⊢ ( 𝑖 ∈ ( 1 ... 𝑁 ) → 𝑖 ∈ ℕ ) |
| 77 |
1 76 68
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑖 ) = ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 78 |
77
|
iuneq2dv |
⊢ ( 𝜑 → ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 79 |
75 78
|
eqtr3d |
⊢ ( 𝜑 → ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) = ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 80 |
16 79
|
eqtrid |
⊢ ( 𝜑 → 𝐿 = ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 81 |
80
|
uneq1d |
⊢ ( 𝜑 → ( 𝐿 ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 82 |
56 72 81
|
3eqtr4d |
⊢ ( 𝜑 → 𝐴 = ( 𝐿 ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 83 |
82
|
ineq2d |
⊢ ( 𝜑 → ( 𝐾 ∩ 𝐴 ) = ( 𝐾 ∩ ( 𝐿 ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
| 84 |
|
indi |
⊢ ( 𝐾 ∩ ( 𝐿 ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) = ( ( 𝐾 ∩ 𝐿 ) ∪ ( 𝐾 ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 85 |
83 84
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐾 ∩ 𝐴 ) = ( ( 𝐾 ∩ 𝐿 ) ∪ ( 𝐾 ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
| 86 |
|
fss |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝐺 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 87 |
7 60 86
|
sylancl |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 88 |
|
fco |
⊢ ( ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ∧ 𝐺 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝐺 ) : ℕ ⟶ 𝒫 ℝ ) |
| 89 |
57 87 88
|
sylancr |
⊢ ( 𝜑 → ( (,) ∘ 𝐺 ) : ℕ ⟶ 𝒫 ℝ ) |
| 90 |
|
ffun |
⊢ ( ( (,) ∘ 𝐺 ) : ℕ ⟶ 𝒫 ℝ → Fun ( (,) ∘ 𝐺 ) ) |
| 91 |
|
funiunfv |
⊢ ( Fun ( (,) ∘ 𝐺 ) → ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( (,) ∘ 𝐺 ) ‘ 𝑗 ) = ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ) |
| 92 |
89 90 91
|
3syl |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( (,) ∘ 𝐺 ) ‘ 𝑗 ) = ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ) |
| 93 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ℕ ) |
| 94 |
|
fvco3 |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( ( (,) ∘ 𝐺 ) ‘ 𝑗 ) = ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 95 |
7 93 94
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( (,) ∘ 𝐺 ) ‘ 𝑗 ) = ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 96 |
95
|
iuneq2dv |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( (,) ∘ 𝐺 ) ‘ 𝑗 ) = ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 97 |
92 96
|
eqtr3d |
⊢ ( 𝜑 → ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) = ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 98 |
13 97
|
eqtrid |
⊢ ( 𝜑 → 𝐾 = ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 99 |
98
|
ineq2d |
⊢ ( 𝜑 → ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ 𝐾 ) = ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 100 |
|
incom |
⊢ ( 𝐾 ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ 𝐾 ) |
| 101 |
|
iunin2 |
⊢ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 102 |
|
incom |
⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 103 |
102
|
a1i |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 104 |
103
|
iuneq2i |
⊢ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 105 |
|
incom |
⊢ ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 106 |
101 104 105
|
3eqtr4ri |
⊢ ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 107 |
106
|
a1i |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 108 |
107
|
iuneq2i |
⊢ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 109 |
|
iunin2 |
⊢ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 110 |
108 109
|
eqtr3i |
⊢ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 111 |
99 100 110
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐾 ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 112 |
111
|
uneq2d |
⊢ ( 𝜑 → ( ( 𝐾 ∩ 𝐿 ) ∪ ( 𝐾 ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) = ( ( 𝐾 ∩ 𝐿 ) ∪ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 113 |
85 112
|
eqtrd |
⊢ ( 𝜑 → ( 𝐾 ∩ 𝐴 ) = ( ( 𝐾 ∩ 𝐿 ) ∪ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 114 |
40 113
|
sseqtrrid |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ( 𝐾 ∩ 𝐴 ) ) |
| 115 |
114 17
|
sstrdi |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ 𝐾 ) |
| 116 |
|
ovolsscl |
⊢ ( ( ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 117 |
115 26 34 116
|
syl3anc |
⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 118 |
39 117
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ∈ ℝ ) |
| 119 |
6
|
rpred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 120 |
39 119
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + 𝐶 ) ∈ ℝ ) |
| 121 |
113
|
fveq2d |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) = ( vol* ‘ ( ( 𝐾 ∩ 𝐿 ) ∪ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) |
| 122 |
37 26
|
sstrid |
⊢ ( 𝜑 → ( 𝐾 ∩ 𝐿 ) ⊆ ℝ ) |
| 123 |
115 26
|
sstrd |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ℝ ) |
| 124 |
|
ovolun |
⊢ ( ( ( ( 𝐾 ∩ 𝐿 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) ∈ ℝ ) ∧ ( ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ℝ ∧ ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝐾 ∩ 𝐿 ) ∪ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ≤ ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) |
| 125 |
122 39 123 117 124
|
syl22anc |
⊢ ( 𝜑 → ( vol* ‘ ( ( 𝐾 ∩ 𝐿 ) ∪ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ≤ ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) |
| 126 |
121 125
|
eqbrtrd |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ≤ ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) |
| 127 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) |
| 128 |
|
iunss |
⊢ ( ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ 𝐾 ↔ ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ 𝐾 ) |
| 129 |
115 128
|
sylib |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ 𝐾 ) |
| 130 |
129
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ 𝐾 ) |
| 131 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝐾 ⊆ ℝ ) |
| 132 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ 𝐾 ) ∈ ℝ ) |
| 133 |
|
ovolsscl |
⊢ ( ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 134 |
130 131 132 133
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 135 |
127 134
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 136 |
130 131
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ℝ ) |
| 137 |
136 134
|
jca |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ℝ ∧ ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) ) |
| 138 |
137
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ℝ ∧ ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) ) |
| 139 |
|
ovolfiniun |
⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ℝ ∧ ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) ) → ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ≤ Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 140 |
127 138 139
|
syl2anc |
⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ≤ Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 141 |
119 11
|
nndivred |
⊢ ( 𝜑 → ( 𝐶 / 𝑀 ) ∈ ℝ ) |
| 142 |
141
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐶 / 𝑀 ) ∈ ℝ ) |
| 143 |
80
|
ineq2d |
⊢ ( 𝜑 → ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 144 |
143
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 145 |
102
|
a1i |
⊢ ( 𝑖 ∈ ( 1 ... 𝑁 ) → ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 146 |
145
|
iuneq2i |
⊢ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 147 |
|
iunin2 |
⊢ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 148 |
146 147
|
eqtri |
⊢ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 149 |
144 148
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) = ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 150 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
| 151 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ 𝑖 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 152 |
1 76 151
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 153 |
152
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ ( ℝ × ℝ ) ) |
| 154 |
|
1st2nd2 |
⊢ ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ 𝑖 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑖 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑖 ) ) 〉 ) |
| 155 |
153 154
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑖 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑖 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑖 ) ) 〉 ) |
| 156 |
155
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑖 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑖 ) ) 〉 ) ) |
| 157 |
|
df-ov |
⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑖 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑖 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑖 ) ) 〉 ) |
| 158 |
156 157
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑖 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 159 |
|
ioombl |
⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑖 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑖 ) ) ) ∈ dom vol |
| 160 |
158 159
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ dom vol ) |
| 161 |
160
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ dom vol ) |
| 162 |
|
ffvelcdm |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 163 |
7 93 162
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 164 |
163
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) ) |
| 165 |
|
1st2nd2 |
⊢ ( ( 𝐺 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) → ( 𝐺 ‘ 𝑗 ) = 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) |
| 166 |
164 165
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑗 ) = 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) |
| 167 |
166
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) ) |
| 168 |
|
df-ov |
⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) |
| 169 |
167 168
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) = ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 170 |
|
ioombl |
⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol |
| 171 |
169 170
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ dom vol ) |
| 172 |
171
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ dom vol ) |
| 173 |
|
inmbl |
⊢ ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ dom vol ∧ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ dom vol ) → ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol ) |
| 174 |
161 172 173
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol ) |
| 175 |
174
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol ) |
| 176 |
|
finiunmbl |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol ) → ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol ) |
| 177 |
150 175 176
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol ) |
| 178 |
149 177
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ∈ dom vol ) |
| 179 |
|
inss2 |
⊢ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ⊆ 𝐴 |
| 180 |
1
|
uniiccdif |
⊢ ( 𝜑 → ( ∪ ran ( (,) ∘ 𝐹 ) ⊆ ∪ ran ( [,] ∘ 𝐹 ) ∧ ( vol* ‘ ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) = 0 ) ) |
| 181 |
180
|
simpld |
⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐹 ) ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) |
| 182 |
|
ovolficcss |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) |
| 183 |
1 182
|
syl |
⊢ ( 𝜑 → ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) |
| 184 |
181 183
|
sstrd |
⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐹 ) ⊆ ℝ ) |
| 185 |
4 184
|
eqsstrid |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 186 |
185
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝐴 ⊆ ℝ ) |
| 187 |
179 186
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ⊆ ℝ ) |
| 188 |
|
inss1 |
⊢ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) |
| 189 |
|
ioossre |
⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ℝ |
| 190 |
169 189
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) |
| 191 |
169
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 192 |
|
ovolfcl |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 193 |
7 93 192
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 194 |
|
ovolioo |
⊢ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) → ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 195 |
193 194
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 196 |
191 195
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 197 |
193
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 198 |
193
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 199 |
197 198
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 200 |
196 199
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 201 |
|
ovolsscl |
⊢ ( ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∧ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ∧ ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ∈ ℝ ) |
| 202 |
188 190 200 201
|
mp3an2i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ∈ ℝ ) |
| 203 |
|
mblsplit |
⊢ ( ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ∈ dom vol ∧ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ∈ ℝ ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) = ( ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∩ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) + ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∖ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) ) ) |
| 204 |
178 187 202 203
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) = ( ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∩ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) + ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∖ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) ) ) |
| 205 |
|
imassrn |
⊢ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) ⊆ ran ( (,) ∘ 𝐹 ) |
| 206 |
205
|
unissi |
⊢ ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) ⊆ ∪ ran ( (,) ∘ 𝐹 ) |
| 207 |
206 16 4
|
3sstr4i |
⊢ 𝐿 ⊆ 𝐴 |
| 208 |
|
sslin |
⊢ ( 𝐿 ⊆ 𝐴 → ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ⊆ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) |
| 209 |
207 208
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ⊆ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) |
| 210 |
|
sseqin2 |
⊢ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ⊆ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ↔ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∩ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) |
| 211 |
209 210
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∩ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) |
| 212 |
211
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∩ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) = ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) |
| 213 |
|
indifdir |
⊢ ( ( 𝐴 ∖ 𝐿 ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( 𝐴 ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∖ ( 𝐿 ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 214 |
|
incom |
⊢ ( 𝐴 ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) |
| 215 |
|
incom |
⊢ ( 𝐿 ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) |
| 216 |
214 215
|
difeq12i |
⊢ ( ( 𝐴 ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∖ ( 𝐿 ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∖ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) |
| 217 |
213 216
|
eqtri |
⊢ ( ( 𝐴 ∖ 𝐿 ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∖ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) |
| 218 |
82
|
eqcomd |
⊢ ( 𝜑 → ( 𝐿 ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = 𝐴 ) |
| 219 |
80
|
ineq1d |
⊢ ( 𝜑 → ( 𝐿 ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 220 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑖 → ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 221 |
220
|
cbvdisjv |
⊢ ( Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ↔ Disj 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 222 |
2 221
|
sylib |
⊢ ( 𝜑 → Disj 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 223 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
| 224 |
223
|
a1i |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ⊆ ℕ ) |
| 225 |
|
uzss |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ( ℤ≥ ‘ 1 ) ) |
| 226 |
43 225
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ( ℤ≥ ‘ 1 ) ) |
| 227 |
226 41
|
sseqtrrdi |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ℕ ) |
| 228 |
51
|
ineq1d |
⊢ ( 𝜑 → ( ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ( ( 1 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 229 |
|
uzdisj |
⊢ ( ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ∅ |
| 230 |
228 229
|
eqtr3di |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ∅ ) |
| 231 |
|
disjiun |
⊢ ( ( Disj 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∧ ( ( 1 ... 𝑁 ) ⊆ ℕ ∧ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ℕ ∧ ( ( 1 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ∅ ) ) → ( ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ∅ ) |
| 232 |
222 224 227 230 231
|
syl13anc |
⊢ ( 𝜑 → ( ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ∅ ) |
| 233 |
219 232
|
eqtrd |
⊢ ( 𝜑 → ( 𝐿 ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ∅ ) |
| 234 |
|
uneqdifeq |
⊢ ( ( 𝐿 ⊆ 𝐴 ∧ ( 𝐿 ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ∅ ) → ( ( 𝐿 ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = 𝐴 ↔ ( 𝐴 ∖ 𝐿 ) = ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 235 |
207 233 234
|
sylancr |
⊢ ( 𝜑 → ( ( 𝐿 ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = 𝐴 ↔ ( 𝐴 ∖ 𝐿 ) = ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 236 |
218 235
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐿 ) = ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 237 |
236
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐴 ∖ 𝐿 ) = ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 238 |
237
|
ineq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ( 𝐴 ∖ 𝐿 ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 239 |
|
incom |
⊢ ( ( 𝐴 ∖ 𝐿 ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ( 𝐴 ∖ 𝐿 ) ) |
| 240 |
104 101
|
eqtri |
⊢ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 241 |
238 239 240
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐴 ∖ 𝐿 ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 242 |
217 241
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∖ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) = ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 243 |
242
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∖ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) = ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 244 |
212 243
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∩ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) + ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∖ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) ) = ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) + ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) |
| 245 |
204 244
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) = ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) + ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) |
| 246 |
202 142
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) − ( 𝐶 / 𝑀 ) ) ∈ ℝ ) |
| 247 |
|
inss2 |
⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) |
| 248 |
190
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) |
| 249 |
200
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 250 |
|
ovolsscl |
⊢ ( ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∧ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ∧ ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 251 |
247 248 249 250
|
mp3an2i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 252 |
150 251
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 253 |
15
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑀 ) ) |
| 254 |
252 202 142
|
absdifltd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑀 ) ↔ ( ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) − ( 𝐶 / 𝑀 ) ) < Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) < ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) + ( 𝐶 / 𝑀 ) ) ) ) ) |
| 255 |
253 254
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) − ( 𝐶 / 𝑀 ) ) < Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) < ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) + ( 𝐶 / 𝑀 ) ) ) ) |
| 256 |
255
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) − ( 𝐶 / 𝑀 ) ) < Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 257 |
246 252 256
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) − ( 𝐶 / 𝑀 ) ) ≤ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 258 |
149
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) = ( vol* ‘ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 259 |
|
mblvol |
⊢ ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol → ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 260 |
174 259
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 261 |
260 251
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 262 |
174 261
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol ∧ ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) ) |
| 263 |
262
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol ∧ ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) ) |
| 264 |
|
inss1 |
⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) |
| 265 |
264
|
rgenw |
⊢ ∀ 𝑖 ∈ ℕ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) |
| 266 |
222
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → Disj 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 267 |
|
disjss2 |
⊢ ( ∀ 𝑖 ∈ ℕ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) → ( Disj 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) → Disj 𝑖 ∈ ℕ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 268 |
265 266 267
|
mpsyl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → Disj 𝑖 ∈ ℕ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 269 |
|
disjss1 |
⊢ ( ( 1 ... 𝑁 ) ⊆ ℕ → ( Disj 𝑖 ∈ ℕ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) → Disj 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 270 |
223 268 269
|
mpsyl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → Disj 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 271 |
|
volfiniun |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol ∧ ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) ∧ Disj 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) → ( vol ‘ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 272 |
150 263 270 271
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol ‘ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 273 |
|
mblvol |
⊢ ( ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol → ( vol ‘ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( vol* ‘ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 274 |
177 273
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol ‘ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( vol* ‘ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 275 |
260
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 276 |
272 274 275
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 277 |
258 276
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 278 |
257 277
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) − ( 𝐶 / 𝑀 ) ) ≤ ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) |
| 279 |
277 252
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ∈ ℝ ) |
| 280 |
202 142 279
|
lesubaddd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) − ( 𝐶 / 𝑀 ) ) ≤ ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ↔ ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ≤ ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) + ( 𝐶 / 𝑀 ) ) ) ) |
| 281 |
278 280
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ≤ ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) + ( 𝐶 / 𝑀 ) ) ) |
| 282 |
245 281
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) + ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ≤ ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) + ( 𝐶 / 𝑀 ) ) ) |
| 283 |
134 142 279
|
leadd2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ≤ ( 𝐶 / 𝑀 ) ↔ ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) + ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ≤ ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) + ( 𝐶 / 𝑀 ) ) ) ) |
| 284 |
282 283
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ≤ ( 𝐶 / 𝑀 ) ) |
| 285 |
127 134 142 284
|
fsumle |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ≤ Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( 𝐶 / 𝑀 ) ) |
| 286 |
141
|
recnd |
⊢ ( 𝜑 → ( 𝐶 / 𝑀 ) ∈ ℂ ) |
| 287 |
|
fsumconst |
⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ ( 𝐶 / 𝑀 ) ∈ ℂ ) → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( 𝐶 / 𝑀 ) = ( ( ♯ ‘ ( 1 ... 𝑀 ) ) · ( 𝐶 / 𝑀 ) ) ) |
| 288 |
127 286 287
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( 𝐶 / 𝑀 ) = ( ( ♯ ‘ ( 1 ... 𝑀 ) ) · ( 𝐶 / 𝑀 ) ) ) |
| 289 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
| 290 |
|
hashfz1 |
⊢ ( 𝑀 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) |
| 291 |
11 289 290
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) |
| 292 |
291
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 1 ... 𝑀 ) ) · ( 𝐶 / 𝑀 ) ) = ( 𝑀 · ( 𝐶 / 𝑀 ) ) ) |
| 293 |
119
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 294 |
11
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 295 |
11
|
nnne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 296 |
293 294 295
|
divcan2d |
⊢ ( 𝜑 → ( 𝑀 · ( 𝐶 / 𝑀 ) ) = 𝐶 ) |
| 297 |
288 292 296
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( 𝐶 / 𝑀 ) = 𝐶 ) |
| 298 |
285 297
|
breqtrd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ≤ 𝐶 ) |
| 299 |
117 135 119 140 298
|
letrd |
⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ≤ 𝐶 ) |
| 300 |
117 119 39 299
|
leadd2dd |
⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ≤ ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + 𝐶 ) ) |
| 301 |
36 118 120 126 300
|
letrd |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ≤ ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + 𝐶 ) ) |