| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniioombl.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 2 |
|
uniioombl.2 |
⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 3 |
|
uniioombl.3 |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
| 4 |
|
uniioombl.a |
⊢ 𝐴 = ∪ ran ( (,) ∘ 𝐹 ) |
| 5 |
|
uniioombl.e |
⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) |
| 6 |
|
uniioombl.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 7 |
|
uniioombl.g |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 8 |
|
uniioombl.s |
⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) |
| 9 |
|
uniioombl.t |
⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) |
| 10 |
|
uniioombl.v |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) |
| 11 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐺 ) = ( ( abs ∘ − ) ∘ 𝐺 ) |
| 12 |
11 9
|
ovolsf |
⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 13 |
7 12
|
syl |
⊢ ( 𝜑 → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 14 |
13
|
frnd |
⊢ ( 𝜑 → ran 𝑇 ⊆ ( 0 [,) +∞ ) ) |
| 15 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 16 |
14 15
|
sstrdi |
⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ ) |
| 17 |
|
1nn |
⊢ 1 ∈ ℕ |
| 18 |
13
|
fdmd |
⊢ ( 𝜑 → dom 𝑇 = ℕ ) |
| 19 |
17 18
|
eleqtrrid |
⊢ ( 𝜑 → 1 ∈ dom 𝑇 ) |
| 20 |
19
|
ne0d |
⊢ ( 𝜑 → dom 𝑇 ≠ ∅ ) |
| 21 |
|
dm0rn0 |
⊢ ( dom 𝑇 = ∅ ↔ ran 𝑇 = ∅ ) |
| 22 |
21
|
necon3bii |
⊢ ( dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅ ) |
| 23 |
20 22
|
sylib |
⊢ ( 𝜑 → ran 𝑇 ≠ ∅ ) |
| 24 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
| 25 |
14 24
|
sstrdi |
⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ* ) |
| 26 |
|
supxrcl |
⊢ ( ran 𝑇 ⊆ ℝ* → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ* ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ* ) |
| 28 |
6
|
rpred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 29 |
5 28
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐸 ) + 𝐶 ) ∈ ℝ ) |
| 30 |
29
|
rexrd |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐸 ) + 𝐶 ) ∈ ℝ* ) |
| 31 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 32 |
31
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 33 |
29
|
ltpnfd |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐸 ) + 𝐶 ) < +∞ ) |
| 34 |
27 30 32 10 33
|
xrlelttrd |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) < +∞ ) |
| 35 |
|
supxrbnd |
⊢ ( ( ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ sup ( ran 𝑇 , ℝ* , < ) < +∞ ) → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
| 36 |
16 23 34 35
|
syl3anc |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |