Metamath Proof Explorer


Theorem uniioombllem5

Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses uniioombl.1 φF:2
uniioombl.2 φDisjx.Fx
uniioombl.3 S=seq1+absF
uniioombl.a A=ran.F
uniioombl.e φvol*E
uniioombl.c φC+
uniioombl.g φG:2
uniioombl.s φEran.G
uniioombl.t T=seq1+absG
uniioombl.v φsupranT*<vol*E+C
uniioombl.m φM
uniioombl.m2 φTMsupranT*<<C
uniioombl.k K=.G1M
uniioombl.n φN
uniioombl.n2 φj1Mi=1Nvol*.Fi.Gjvol*.GjA<CM
uniioombl.l L=.F1N
Assertion uniioombllem5 φvol*EA+vol*EAvol*E+4C

Proof

Step Hyp Ref Expression
1 uniioombl.1 φF:2
2 uniioombl.2 φDisjx.Fx
3 uniioombl.3 S=seq1+absF
4 uniioombl.a A=ran.F
5 uniioombl.e φvol*E
6 uniioombl.c φC+
7 uniioombl.g φG:2
8 uniioombl.s φEran.G
9 uniioombl.t T=seq1+absG
10 uniioombl.v φsupranT*<vol*E+C
11 uniioombl.m φM
12 uniioombl.m2 φTMsupranT*<<C
13 uniioombl.k K=.G1M
14 uniioombl.n φN
15 uniioombl.n2 φj1Mi=1Nvol*.Fi.Gjvol*.GjA<CM
16 uniioombl.l L=.F1N
17 inss1 EAE
18 7 uniiccdif φran.Gran.Gvol*ran.Gran.G=0
19 18 simpld φran.Gran.G
20 ovolficcss G:2ran.G
21 7 20 syl φran.G
22 19 21 sstrd φran.G
23 8 22 sstrd φE
24 ovolsscl EAEEvol*Evol*EA
25 17 23 5 24 mp3an2i φvol*EA
26 difssd φEAE
27 ovolsscl EAEEvol*Evol*EA
28 26 23 5 27 syl3anc φvol*EA
29 25 28 readdcld φvol*EA+vol*EA
30 inss1 KAK
31 imassrn .G1Mran.G
32 31 unissi .G1Mran.G
33 13 32 eqsstri Kran.G
34 33 22 sstrid φK
35 1 2 3 4 5 6 7 8 9 10 uniioombllem1 φsupranT*<
36 ssid ran.Gran.G
37 9 ovollb G:2ran.Gran.Gvol*ran.GsupranT*<
38 7 36 37 sylancl φvol*ran.GsupranT*<
39 ovollecl ran.GsupranT*<vol*ran.GsupranT*<vol*ran.G
40 22 35 38 39 syl3anc φvol*ran.G
41 ovolsscl Kran.Gran.Gvol*ran.Gvol*K
42 33 22 40 41 mp3an2i φvol*K
43 ovolsscl KAKKvol*Kvol*KA
44 30 34 42 43 mp3an2i φvol*KA
45 difssd φKAK
46 ovolsscl KAKKvol*Kvol*KA
47 45 34 42 46 syl3anc φvol*KA
48 44 47 readdcld φvol*KA+vol*KA
49 6 rpred φC
50 49 49 readdcld φC+C
51 48 50 readdcld φvol*KA+vol*KA+C+C
52 4re 4
53 remulcl 4C4C
54 52 49 53 sylancr φ4C
55 5 54 readdcld φvol*E+4C
56 1 2 3 4 5 6 7 8 9 10 11 12 13 uniioombllem3 φvol*EA+vol*EA<vol*KA+vol*KA+C+C
57 29 51 56 ltled φvol*EA+vol*EAvol*KA+vol*KA+C+C
58 5 50 readdcld φvol*E+C+C
59 42 49 readdcld φvol*K+C
60 inss1 KLK
61 ovolsscl KLKKvol*Kvol*KL
62 60 34 42 61 mp3an2i φvol*KL
63 62 49 readdcld φvol*KL+C
64 difssd φKLK
65 ovolsscl KLKKvol*Kvol*KL
66 64 34 42 65 syl3anc φvol*KL
67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 uniioombllem4 φvol*KAvol*KL+C
68 imassrn .F1Nran.F
69 68 unissi .F1Nran.F
70 69 16 4 3sstr4i LA
71 sscon LAKAKL
72 70 71 mp1i φKAKL
73 64 34 sstrd φKL
74 ovolss KAKLKLvol*KAvol*KL
75 72 73 74 syl2anc φvol*KAvol*KL
76 44 47 63 66 67 75 le2addd φvol*KA+vol*KAvol*KL+C+vol*KL
77 62 recnd φvol*KL
78 49 recnd φC
79 66 recnd φvol*KL
80 77 78 79 add32d φvol*KL+C+vol*KL=vol*KL+vol*KL+C
81 ioof .:*×*𝒫
82 inss2 22
83 rexpssxrxp 2*×*
84 82 83 sstri 2*×*
85 fss F:22*×*F:*×*
86 1 84 85 sylancl φF:*×*
87 fco .:*×*𝒫F:*×*.F:𝒫
88 81 86 87 sylancr φ.F:𝒫
89 ffun .F:𝒫Fun.F
90 funiunfv Fun.Fn=1N.Fn=.F1N
91 88 89 90 3syl φn=1N.Fn=.F1N
92 91 16 eqtr4di φn=1N.Fn=L
93 fzfid φ1NFin
94 elfznn n1Nn
95 fvco3 F:2n.Fn=.Fn
96 1 94 95 syl2an φn1N.Fn=.Fn
97 ffvelcdm F:2nFn2
98 1 94 97 syl2an φn1NFn2
99 98 elin2d φn1NFn2
100 1st2nd2 Fn2Fn=1stFn2ndFn
101 99 100 syl φn1NFn=1stFn2ndFn
102 101 fveq2d φn1N.Fn=.1stFn2ndFn
103 df-ov 1stFn2ndFn=.1stFn2ndFn
104 102 103 eqtr4di φn1N.Fn=1stFn2ndFn
105 96 104 eqtrd φn1N.Fn=1stFn2ndFn
106 ioombl 1stFn2ndFndomvol
107 105 106 eqeltrdi φn1N.Fndomvol
108 107 ralrimiva φn1N.Fndomvol
109 finiunmbl 1NFinn1N.Fndomvoln=1N.Fndomvol
110 93 108 109 syl2anc φn=1N.Fndomvol
111 92 110 eqeltrrd φLdomvol
112 mblsplit LdomvolKvol*Kvol*K=vol*KL+vol*KL
113 111 34 42 112 syl3anc φvol*K=vol*KL+vol*KL
114 113 oveq1d φvol*K+C=vol*KL+vol*KL+C
115 80 114 eqtr4d φvol*KL+C+vol*KL=vol*K+C
116 76 115 breqtrd φvol*KA+vol*KAvol*K+C
117 5 49 readdcld φvol*E+C
118 9 ovollb G:2Kran.Gvol*KsupranT*<
119 7 33 118 sylancl φvol*KsupranT*<
120 42 35 117 119 10 letrd φvol*Kvol*E+C
121 42 117 49 120 leadd1dd φvol*K+Cvol*E+C+C
122 5 recnd φvol*E
123 122 78 78 addassd φvol*E+C+C=vol*E+C+C
124 121 123 breqtrd φvol*K+Cvol*E+C+C
125 48 59 58 116 124 letrd φvol*KA+vol*KAvol*E+C+C
126 48 58 50 125 leadd1dd φvol*KA+vol*KA+C+Cvol*E+C+C+C+C
127 50 recnd φC+C
128 122 127 127 addassd φvol*E+C+C+C+C=vol*E+C+C+C+C
129 2t2e4 22=4
130 129 oveq1i 22C=4C
131 2cnd φ2
132 131 131 78 mulassd φ22C=22C
133 78 2timesd φ2C=C+C
134 133 oveq2d φ22C=2C+C
135 127 2timesd φ2C+C=C+C+C+C
136 132 134 135 3eqtrd φ22C=C+C+C+C
137 130 136 eqtr3id φ4C=C+C+C+C
138 137 oveq2d φvol*E+4C=vol*E+C+C+C+C
139 128 138 eqtr4d φvol*E+C+C+C+C=vol*E+4C
140 126 139 breqtrd φvol*KA+vol*KA+C+Cvol*E+4C
141 29 51 55 57 140 letrd φvol*EA+vol*EAvol*E+4C