Metamath Proof Explorer


Theorem mblsplit

Description: The defining property of measurability. (Contributed by Mario Carneiro, 17-Mar-2014)

Ref Expression
Assertion mblsplit AdomvolBvol*Bvol*B=vol*BA+vol*BA

Proof

Step Hyp Ref Expression
1 reex V
2 1 elpw2 B𝒫B
3 ismbl AdomvolAx𝒫vol*xvol*x=vol*xA+vol*xA
4 fveq2 x=Bvol*x=vol*B
5 4 eleq1d x=Bvol*xvol*B
6 ineq1 x=BxA=BA
7 6 fveq2d x=Bvol*xA=vol*BA
8 difeq1 x=BxA=BA
9 8 fveq2d x=Bvol*xA=vol*BA
10 7 9 oveq12d x=Bvol*xA+vol*xA=vol*BA+vol*BA
11 4 10 eqeq12d x=Bvol*x=vol*xA+vol*xAvol*B=vol*BA+vol*BA
12 5 11 imbi12d x=Bvol*xvol*x=vol*xA+vol*xAvol*Bvol*B=vol*BA+vol*BA
13 12 rspccv x𝒫vol*xvol*x=vol*xA+vol*xAB𝒫vol*Bvol*B=vol*BA+vol*BA
14 3 13 simplbiim AdomvolB𝒫vol*Bvol*B=vol*BA+vol*BA
15 2 14 biimtrrid AdomvolBvol*Bvol*B=vol*BA+vol*BA
16 15 3imp AdomvolBvol*Bvol*B=vol*BA+vol*BA